NAVAL POSTGRADUATE SCHOOL
Monterey, California

D-A283 124
\tllll'\llll\llllllllllﬂlllllll!\llllil‘\lll

3 Vg4-25251
AR

THESIS

Modeling and Simulation of a Fiber Distributed Data Interface
Local Area Network (FDDI LAN) Using OPNET® for
Interfacing Through the Common Data Link (CDL)

by

Ermest E. Nix, Jr.

June 1994

Thesis Advisor: Shridhar Shukla

Approved for public release; distribution is unlimited.

' DTIC QUALITY u\A...Ph.C"EDd 1 2 .
. 94 8

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

aspect of this collection of information, including suggestions for

Washington DC 20503.

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data}
sources, gathering and maintaining the data ncoded, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other}
reducing this burden, to Washington headquarters Services, Directorate for Information Operations and
Reports, 1213 Jefferson Devis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188

2. REPORT DATE
June 1994

3. REPORT

TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE

MODELING AND SIMULATION OF A FIBER DISTRIBUTEL DATA INTERFACE LOCAL
AREA NETWORK (FDDI LAN) USING OPNET® FOR INTERFACING THROUGH THE
COMMON DATA LINK (CDL)

6. AUTHORC(S)

AGENCY USE ONLY (Leave blank)
n Emest E. Nix. Jr.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterev CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER:

9 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER:

11. SUPPLEMENTARY NOTES

1J.S Government.

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the

|

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release. distribution is unlimited.

12b. DISTRIBUTION CODE “

13. ABSTRACT (maximum 200 words)

The Optimized Network Engineering Tool (OPNET®) is a commercially avalable communications network simulation package. This thesis
nvolves the modification of OPNET®s Fiber Distributed Data Interface Local Area Network (FDDI LAN) model in order to enhance its usefuln

as an aid in the development of recommendations for the charactensocs and metncs 1o be eventually included in the Defense Service Project Office’
(DSPO) Common Data Link (CDL) project. This work includes a step-bv-step guide for FDDI simulation in OPNET®, and a discussion of th
changes made to the original model to enhance its performance and data displav charactenistics. Simple tests are provided to verify the completed

|l model's performance and usefulness as a working tool for further development

14. SUBJECT TERMS
FDDI, SYNCHRONOUS. LAN, SIMULATION, MULTICAST

15. NUMBER OF PAGES:
213

16. PRICE CODE

17. SECURITY CLASSIFICA-
TION OF REPORT

18. SECURITY CLASSIFI-
CATION OF THIS PAGE

TION OF ABSTRACT

NSN 7540-01-280-5500

19. SECURITY CLASSIFICA-

20. LIMITATION OF

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited.

Modeling and Simulation of a Fiber Distributed Data Interface Local Area Network
(FDDI LAN) Using OPNET?® for Interfacing Through the Common Data Link (CDL)

by

Emest E. Nix, Jr.
Lieutenant, United States Navy
B.S. Ed. University of South Carolina, 1985

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
Monterey, California

June 1994
Author: aﬂm} C %)/ %
Emest E. Nix, Jr.
Approved by: ﬁﬂ ’)% e
Shridhar Shukla, Thesis Advisor

AAm 2 A

78775 4yd

6~ Michael A Morgan, Ciffrman
Department of Electrical and Computer Engineering

ACKNOWLEDGEMENTS

The author gratefully acknowledges the efforts of those whose assistance made this
thesis achievable: Dr. Shridhar Shukla, who provided guidance, support and motivation;
MIL 3, Inc. Technical Support Staff who were available days, nights, weekends and
holidays, and treated every question seriously, regardless of content, Mr. James "The
Wizard" Scott, thesis preparer extraordinaire, who performed miracles on request, and
Mrs. Hernestina Nix, who never once complained.

OPNET?® is a registered trademark of MIL 3 Inc.

BONeS?® is a registered trademark of Comdisco Systems, Inc.

‘locsssion For R
NTIS GRA&I cd
DTIC TAS N
Unanncunced O

Justificaldionem

By_
Distributiov/ oy

B e

Avai’9b411t~ 9408

R N

ﬁ vohd angfoer

M;I e Jl

ABSTRACT

The Optimized Network Engineering Tool (OPNET®) is a commercially available
communications network simulation package. This thesis involves the modification of
OPNET®s Fiber Distributed Data Interface Local Area Network (FDDI LAN) mode! in order
to enhance its usefulness as an aid in the development of recommendations for the
characteristics and metrics to be eventually included in the Defense Service Project Office's
(DSPO) Common Data Link (CDL) project. This work includes a step-by-step guide for
FDDI simulation in OPNET®, and a discussion of the changes made to the original model to

enhance its performance and data display characteristics. Simple tests are provided to verify

the completed model's performance and usefulness as a working tool for further development.

I. INTRODUCTION e e e 1
A. PROBLEMSTATEMENT. 1
B. SCOPE. e e 2
C. BENEFITS. e e s, 2
D. ORGANIZATION it e e 3

II. MODELING ANFDDILANINOPNET®. 4
A OVERVIEW. i s 4
B. PRELIMINARYTHEORY 5

1. Theoretical vs OPNET®* Modelof FDDI 5
2. FDDILAN EquationParameters. 8
a "FMax"............ 8

b. "D Max". 9

C "SA". ... 10

d "TIRT" e 11

C. MODELSTRUCTURE 11
1. FDDILAN. 15
2. FDDIStation. 17
3. Processes. 19
a SourceNode. 24

b SinkNode 26

c. Medium AccessControl(MAC) 27

4 Packets. 30
a. ICIFormats 30

b. PacketFormats. 33

S. EnvionmentFile. 33
a. "station address”. 34

b. "mngid"........ 35

c. "lowdestaddress” 35

d. ‘"highdestaddress". 35

e. "arrivalrate" 35

f ™meanpklen". 36

g "asyme mix" 36

h. ‘“"syncbandwidth". 36

i. "TReq". 38

j- "spawnstation"., .. 38

k. "station latency". 38

TABLE OF CONTENTS

L “prop_delay". 38
m. “acceleration token". 39
n. “duration” 39
0. "verbose sim" 39
p. Mupdim". 39
qQ tosfile" 39
r. “ovfile"....... 40
s, "seed" 40
t. "debug" 40
D. SIMULATION. e, 4]
1. Buildthe LAN 41
2. Correct "OPBUG2070" 41
3. Implement "OPBUG 2081"Patch 41
4. Update EnvironmentFile. 41
5. GenerateProbeFile 42
6. SimulationEditor. 42
7. StarttheSimmlation 45
8 Amlysis 45
9. DebugTool 47
II. MODEL MODIFICATIONS 50
A. OVERVIEW. e 50
B. PRIORITIZATION, 51
1. Activating Prioritization in OPNET®s FDDI Model 51
2. Changing the SchemeandtheCode 53
3. Subquewes. 53
aa "RCV.TK" 54
b. "TX_DATA". 55
4. Modifications to Prioritization 57
a. StationModelChanges. 58
b. EnvironmentFileChanges 60
¢. Source Modifications. 61
d MACModifications 63
e. Sink Node Modifications. 64
f PacketFormat. 64
C. PERFORMANCEMEASURES 65
1. Overview. 65
2. Vanables. 67
3. InitializationState 68
4 "DISCARD"State 70
5. “STATS"State. 72
D. BRIDGELINK. 73
1 Station Model Modifications 74
vi

2 Process Model Modifications. 75

E. MULTICAST s e s 77
1 OvVerview. e 77

2. EnvironmentFile. 79

3 StationModel L 80

4 SourceProcessModel 81

a Varigbles. 81

b. [InitializationState 83

c "ARRIVAL" State 84

5. MACProcessModel. 86

a Variables. 86

b. EncapsulationState 86

c. FrameRepeatState 87

6. Limitation 90

IV. MODELTESTING it i . 91
A SYNCHRONOUSTHROUGHPUT 92
I. Overview. 92

2. SEtUP. 92

3. Results. 95

B. PRELIMINARYLINKINGMODEL 95
1 Overview. 95

2 Setup. 99

3 RESULTS e 100

C. SYNCHRONOUSTIMING 102
1. Overview. 102

2. SEP. 102

3. Results. 104

D. ASYNCHRONOUSEFFICIENCY 104
1 Overview. 104

2. Resalts. 107

E. MULTICASTING 107
1. Overview. 107

2. FirstTest 109

a Setup. 109

b. Results. 110

3 Secondtest., 112

a. Sewp. 112

b. Results. 112

4 ThirdTest 114

a Setwp. 114

b Results. 114

5 FourthTest. 115

a Setup. 115

b Results. 11§

V. CONCLUSIONS AND RECOMMENDATIONS 118
A. CONCLUSIONS. 118

B. RECOMMENDATIONS. 119
APPENDIX A. FILERETRIEVAL VIAFTP. 121
APPENDIX B. PACKET AND ICI FRAME STRUCTURES. 123
A. PACKETFORMATS 123

1. “ddi llc £ 123

2. "fddimac " 123

3. “fddimac tk* 123

B. ICIFORMATS 124

1. *fddi mac ind". 124

2. “fddi mac_req". 124
APPENDIX C. EXAMPLE ENVIRONMENT FILE FOR 32-STATION FDDI LAN
...................................... 125
APPENDIXD. DEBUGTOOLEXCERPT. 128
APPENDIX E. MAC °C* CODE: "fddi mac multpre* 133
APPENDIX F. SOURCE *C" CODE: "fddi_gen_multprc. 175
APPENDIX G. SINK °C* CODE: "fddi_sink muitprc 184
APPENDIX H ENVIRONMENT FILE FOR 50-STATION MULTICAST
CAPABLEFDDILAN. 196
APPENDIX1 CONVENTIONS 200
APPENDIXJ. GLOSSARY. 201
LISTOFREFERENCES 202
INITIAL DISTRIBUTIONLIST 203

I. INTRODUCTION

A. PROBLEM STATEMENT

The simulation model described in this thesis was developed in support of the Defense
Support Project Office's (DSPO) Common Data Link (CDL) project. The Common Data
Link is a full duplex, jam resistant, point-to-point microwave communication system for use
in imaging and signals intelligence collection systems (DSPO, 1993, p. 1). Essentially, CDL
is to provide a protocol for communication between two or more Fiber Distributed Data
Interface Local Area Networks (FDDI LAN). These include an airborne LAN providing
sensor information with high data transfer rates, and a ground based LAN providing
command and control information.

This work is concerned primarily with the modification and testing of a commercially
available communications network simulation program, MIL 3, Inc.'s Optimized Network
Engineering Tool (OPNET?®). This thesis represents the first portion of three relatively
independent research tasks being performed as MS theses to provide evaluations of several
Network Interfaces (NT) to the CDL and a multilink point-to-point protocol, in support of

the CDL project.

B. SCOPE

The scope of this thesis includes the following:

Introduce the CDL concept as the context in which the FDDI simulation
model is to be modified and tested.

Provide a tutorial style introduction to the OPNET® FDDI model, designed
to expand upon the tutorial provided by the manufacturer. This is directed
to those who will conduct further studies in the CDL project, and also to
students whose class laboratory work will include simulations in OPNET®.
Discuss in detail the modifications made to the given model. Provide
analysis of the model's actual simulation performance as a validation of the
model's usefulness to the CDL work at NPS through comparisons against

trials published in the research literature using other simulation tools.

C. BENEFITS

The primary contribution of this thesis is the development of a functioning simulation

model that will support the features typically required in a CDL deployment scenario. Typical

data communication requirements include the following:

a wide range of data rates,
a wide range of error rates and types of error correction required,
real-time requirements such as user-specified delivery delays and its

variation (jitter),

connection requirements (whether connection-oriented or connectionless,
multicasting, broadcasting, etc.),

retransmission requirements,

coupling and synchronization with other data sources, and

adjustable prioritization relative to other sources.

The second benefit is to document in detail the MIL 3, Inc.'s FDDI LAN simulation

model in its operation and in its modification. The third benefit lies in the use of the

developed model as an instructional tool for classroom laboratory exercises supporting the

study of FDDI LAN operation.

D. ORGANIZATION

This thesis is organized as follows. Chapter II provides a tutorial on the use of the

FDDI LAN model provided with OPNET®. Chapter III addresses the details of the

modifications made to the given model to simulate multicasting and priority-based traffic.

Where applicable, clarifications regarding the OPNET® manuals are highlighted. Chapter IV

presents the results of simulation tests intended to verify the validity of the modified model.

The thesis ends with conclusions and recommendations for future work in Chapter V'.

II. MODELING AN FDDI LAN IN OPNET®

A. OVERVIEW

This chapter is intended to provide a tutorial on the use of OPNET® to model an FDDI
LAN by providing a brief set of steps to build and execute a simulation. The current version
as of this writing is Release 2.4.A, dated 02/27/93, which is the third revision. Release 2.4 A,
Errata 1, dated 08/01/93 is a manual update. Some prerequisite knowledge is required of the
user, including "C" programming language syntax, ability to use a UNIX workstation, and an
understanding of the FDDI protocol. MIL 3, Inc. provide~ thorough documentation in the
form of an eleven volume set of manuals, the first of which is Vol. 1.0, entitled: ZTwtorial
Manual. Tt includes a general introduction to OPNET?®, a trouble-shooting guide, and five
chapters presenting different communications network models. While none of these discusses
FDDI in particular, all are designed to familiarize the novice user with the mechanics of the
user interface, and should be studied prior to working with OPNET®. Volumes 4.0 and 4.1,
the ool Operations Manual, describes the editors of the user interface, and should likewise
be studied. The chapter entitied "FDDI" in Vol. 8.1.0, Example Models Manual, Protocol
Models, discusses the FDDI simulation in detail, and provides the essential information to
build, develop and execute a simulation. Most of the information presented here is available
in the manuals, but a number of idiosyncrasies exist which are not readily documented. These
required trial and error experimentation to discover, and in many cases required explanation

4

from MIL 3, Inc.'s excellent technical support organization. The new user is advised to heed
every sentence regarding mechanical details; much of the advice given is hard-earned.

This thesis will not present an explanation of the FDDI protocol in detail, except as
necessary to emphasize or clarify the operation of the model. Many discussions exist in the
research literature and textbooks, for example, Stallings, (1991, 1993). Those interested in
the physical characteristics of optical fiber systems are referred to Powers, (1993). A useful
introduction to modeling FDDI in OPNET® is Modeling and Simulation of a Fiber
Distributed Data Interface Local Area Network, a Naval Postgraduate School MSEE thesis
by Aldo Schenone, which summarizes OPNET®'s FDDI model, includes a detailed description
of the FDDI protocol, presents the results of several simulations, and ends with a challenge
to other researchers to further develop the model. (Schenone, 1993)

The remainder of this chapter will briefly introduce the structure of OPNET®s FDDI
LAN model and its components, introduce some preliminary modifications, then lead the

reader through a simple simulation.

B. PRELIMINARY THEORY

1. Theoretical vs OPNET® Model of FDDI
The setting of parameters in OPNET® simulations is based on the following

equation and discussion, which is found in most literature treating FDDI LANs, including

Powers (1993, p. 340), Stallings (1993, p. 225), Tari, et al (1988, p.55), and

Jain, (1991, p.20), to name a few:

D_Max + F_Max + TokenTime + BSA, < TIRT (1).

SA, = synchronous allocation for station i,
D_Max = propagation time for one complete circuit of the ring,
F_Max = time required to transmit a maximum-length frame (4500 octets), and

TokenTime = time required to transmit a token.

In an actual LAN, a station management protocol handles the assignments of SA,,
which may be changed in real time. OPNET® simulations represent steady-state performance,
and do not contemplate changing network conditions.

All stations negotiate 8 common value of TIRT. Also, these timers and variables

are maintained at each station

- Token Rotation Timer (TRT)
- Token Holding Timer (THT)
- Late counter (LC)

Each station is initialized to the same TRT, which is set to TTRT. Note that LC,
TRT and THT are not global; each station maintains its own copies, which will differ from
those of other stations. If a given station receives the token before its TRT has expired,' then

that TRT is reset to TTRT. On the other hand, should the token arrive after the expiration

6

of TRT, then its lateness is recorded by setting LC to "1" (at that station). Two consecutive
late tokens will increment LC to "2", in which case the token is considered to be lost, and a
re-initialization process will commence. OPNET® has no provision for re-initialization. On
the other hand, as a computerized simulation, it never permits LC=2 to occur.

When the token arrives early, (before TRT expires), THT is set to the current
value of TRT. The transmission rules are as follows:

ll. A station may transmit synchronous traffic for a time SA,, as specified for

that station.

2. THT is enabled after synchronous traffic is sent, or if there was no

synchronous traffic to send. The station may transmit asynchronous traffic
while THT > 0.

In the TX_DATA state of the MAC process model, THT is incremented from zero
to THT. This is an important point in regard to the prioritization scheme by which a value
T_Pri[1] is assigned to each priority setting, and the eligibility of a given priority to transmit
depends on T_Pri(1] in comparison to THT. That is, for THT decrementing, priority i
traffic may be transmitted as long as T_Pri[i] is less than THT. This implies lower
T_Pri[i] is assigned to higher priority. In OPNET®, THT increments up from zero. Priority
i traffic may be transmitted as long as T_Pri[i] is greater than THT, implying that higher
T_Pri[i] is assigned to higher priority. This subtle point is important to know when setting
values to T_Pri[1] in the INIT state of the MAC process model.

There is an important distinction in the timing of transmission eligibility for

synchronous and asynchronous traffic:

» The time spent sending synchronous traffic may not exceed SA, for station

i. That is, the protocol will not allow a synchronous packet transmission

to commence if it can not be completed without exceeding SA,. OPNET®

supports this criterion.
> Asynchronous transmissions may commence as long as THT has not
expired. Any packet transmission in progress when THT expires is
allowed to complete, but no more will commence.
The protocol allows the actual token rotation time to have a maximum va:
(2)TTRT, with an average value of TTRT over time.
2, FDDI LAN Equation Parameters
Each of the terms in Equation 1 given above is addressed in this section, with
reference to its representation in OPNET®'s Environment file attributes.
a "F Max"

The time required to transmit a maximum length packet is based on the
assumption that any station is capable of transmitting at the rate of 100Mbps. Since the
maximum packet length is 36,000 bits (4500 octets or bytes), the algebra yields 0.360 ms for
F_Max. Powers agrees (1993, p. 340), but Tan et. al. use 0.361 ms (1988, p. 55). In
OPNET?®, the fddi_mac process model defines the transmission rate as 100 Mbps, in the
Header Block. F_Max is not directly assigned as an attribute, but simply exists as a physical

characteristic which must be considered in determining TTRT and SA, assignments.

b "D Max"
The Maximum Ring Latency is the time required for a frame to travel
around the ring. The maximum value is often assumed in textbook discussions, but it should

be calculated for individual cases. The total delay may be defined as foliows:

D_Max = (total fiber length x delay rate)+(number of
stations x station latency)

Powers uses 1.73 ms, Tari et.al. uses 1.62 ms, and Dykeman and Bux use 1.62 ms. D_Max
includes the time required for a frame (which is basically a number of light flashes) to travel
the length of the fiber on the ring, plus the time required to cross each station interface.
5.085 x 10 sec./km. is the value used in the literature for the delay rate of a signal in optical
fiber. The reciprocal results in 1.9665e+08 m/s, which agrees with the generally accepted
value of % ¢ for the speed of light in glass. OPNET® and Dykeman & Bux use a station
delay of 60.0e-08 sec. Powers assumes 1 us as a representative value. Ultimately the value
is a physical characteristic that could be measured on a real device, and may be declared in
a computer simulation. The value 1.617 ms derives from using the maximum possible
dimensions: 500 dual attachment stations or 1000 single attachment stations on a 200 km
ring yield the following:
(1000 « 60.0 x 10°) + (200 « 5.085 x 10%) = 1.617 ms.

The environment file attribute prop_delay represents the actual time the

packet is on the fiber between two stations, rather than the delay rate, and therefore defines

the size of the ring. OPNET® has no safety feature to prevent the user from entering

attributes that would define a ring larger than 200 k. Note that the stations are assumed to
be equally spaced. The user should realize that the value of 5.085¢-06 given with the original
example environment file implies a one kilometer length of fiber, rather than a delay rate.
Powers (1993, p. 328) notes that the early proposal for FDDI limits fiber length between
stations to 2 kilometers. In OPNET®, the attributes prop_delay and station_latency are
used in the “C" code to postpone the reception of a packet until sufficient time has passed to
allow for physical delays.

¢ "SA"

Synchronous allotment, or synchronous bandwidth, is the time a station is
granted to transmit synchronous traffic, regardless of the lateness of the token. It is a form
of prioritization, providing a means by which certain types of traffic are not delayed. For
example, voice traffic would be synchronous. Textbook discussions represent SA, in units of
time for each station.

Asynchronous traffic is transmitted whenever there is THT remaining after
the transmission of all synchronous traffic. It is the responsibility of the Station Management
Protocol (in OPNET®, the user) to ensure that the synchronous bandwidth is sufficient to
handle the synchronous offered load. One nuance involves the inviolate nature of SA, for each
station. A given station's synchronous offered load may amount to relatively little in terms
of bits per second, while the packet size is assigned a value too large to be transmitted in the
time SA,. In this case, synchronous traffic would never be transmitted, and outbound

packets would simply accumulate in the buffers of the MAC. The Environment file attribute

10

“sync bandwidth™ corresponds to SA,, but is expressed as a unitless fraction of TTRT,
rather than as a time.
d "TIRT”
Equation 1 suggests that physical requirements of the fiber and the stations
are used to determine a workable TTRT value. The FDDI specification allows a range of
settings from 4 ms to 165 ms (Powers, 1993, p. 339). Powers also notes that synchronous

voice transmission requires ' SA, = 10 ms. In OPNET®, the Eavironment file attribute T_Req

corresponds to TTRT.

C. MODEL STRUCTURE

OPNET®'s FDDI LAN model structure is hierarchical. The LAN is a ring made of
stations and the connections between them. Figure 1 shows a 50-station FDDI LAN as
shown in the user interface window. Figure 2 is a ten station ring provided for greater clarity
of detail. The stations are modeled as connected nodes, each of which is in turn defined by
a process model. The processes are represented by state transition diagrams, which are the
ultimate source of the "C" language code that describes the model's behavior. Figure 3
illustrates the FDDI station model. Figures 4-6 are the process models for the source, sink,
and MAC processes, respectively. These correspond one-to-one to the nodes "11¢c_sink,”
"11c_sink,” and "mac” shown in Figure 3. The packets of information that travel between

stations on the ring, and between nodes within the station, are also modeled and may be

11

216 . :
‘”uo 219 212 113

Figure 1. 50-Station FDDI LAN, *fddi_net_50"

Figure 2. Ten-Station FDDI LAN, "fddi_net_10"

12

e B
Phy_tx
- -— E
llc_src mac Phy_rx
——
llc_sink

Figure 3. FDDI Station Model, "fddi_station"

q [INIT | ARRTVAL

Figure 4. Source Process Model, "fddi_gen"

13

(detault)

Figure 6. MAC Model, "fddi_mac"

14

modified. Model parameters may be entered by several methods, with the Eavironment file
being by far the most convenient.

1. FDDILAN

Figure 7 shows a 32-station FDDI ring in the user interface window as it would
appear on a computer screen. This image is displays the Network Editor, whose icon appears
toward the upper left comer of the figure. (A note on the mechanics of activating the various
editors: as indicated in the tutorial manual, the center mouse button activates the desired
editor. If instead either the left or right button is pressed, then the opposite button must also
be pressed to "cancel” the first; only then will the center button work as expected). To the
right of the ring are on-screen menus of attributes for one station (actually, three menus are
shown to display simultaneously all the fields). This menu is invoked by placing the cursor
over the desired station, then pressing the nght mouse button. The FDDI protocol supports
up to 500 dual-attachment stations on a ring, and OPNET® permits from two to 500 stations
in a ring.

Actual generation of the ring is best done outside OPNET®, through a UNIX command
window set to the "~\op_mode1s\fdd{* directory path. The command " fdd{i_build.em.x
<number_of_stations>" will automatically generate an FDDI LAN with the number of
stations specified. The user should verify that this function is present in the desired
subdirectory. This operation is described in manual Vol. 8.1.0, "FDDI," and refers the user
to Vol. 6.0, External Interfaces Manual, which has a more complete description of the ring
building protocol. Were OPNET® active during this ring-building process, then the "Rehash”
icon toward the lower right of the user interface window must be activated to update the

15

G H IO

Figure 7. Network and Attributes Menus in User Interface Window

16

program's access to models in the subdirectory. In general, the "Rehash” command should
be used frequently, particularly when new files are generated through simulation runs or
through model editing.

The LAN as shown is not actually a true ring architecture, as no dedicated
physical layer object exists in OPNET® for modeling ring architectures. The model is in fact
a circle of point-to-point links; the ring is an abstraction whose characteristics and behavior
are represented in the "C" programs that comprise the process models. (OPNET®, Vol. 8.1.0,
“FDDL" p.23)

2. FDDI Station

Figure 8 illustrates the FDDI station in the user interface window, summoned and
printed from the Node Editor. Also shown are the menus listing the attributes associated with
each part of the station model. Message traffic in the form of packets is generated at the
source, 11c_src, at a rate specified by the user. The source model does not function as a
true Logical Link Control (LLC) beyond correctly interfacing with the Medium Access
Control (MAC) model. (OPNET®, Vol. 1.0, "FDDL" p. 21) The MAC entity is represented
by mac in the model, and is responsible for encapsulating packets generated by the source,
holding these packets until they can be transmitted, receiving packets from other stations,
destroying packets as needed, and maintaining the locally held Token Holding Timer (THT)
and Token Rotation Timer (TRT). Packets are counted and statistics gathered at 11c_sink.
These three nodes are modeled in detail by respective process models, which may be assigned

with the attributes menus shown in Figure 8. The field "process mode1" may be changed

17

fdds_nac_ot2g p
1

Qosbled

G osbled

oz oo

1) — ()

&

-
8§ G (escrMac)
cabls_tessrwer

Figure 8. FDDI Station Model with On-Screen Attributes Menus

18

by cursor action, with selection made from the resulting submenu presenting a list of available
process models. The nodes "phy_rx™ and "phy_tx" represent the receiver and transmitter
interfaces to the ring, and are not further defined by process models.

The user may modify the station model within the Node Editor by setting the
attributes fields as desired, then saving the model by activating the "write node model”
icon toward the lower left corner of the user interface window. By then exiting the Node
Editor, entering the Network Editor, and calling the desired network model (e.g.,
" fddi_net_32"), each station acquires the new setting when the network model is archived
and bound ("A+B* icon). The same modification may be effected from within the Network
Editor by calling the attributes menus for each station and setting them individually. This
method would be preferred only if the user desires to set differing attributes in various
stations. Note that setting the attribute fields is not the same as modifying the process model
itself, which is accomplished with changes to the "C" programming code accessed through
the Process Editor.

3. Processes

Process models are specified by State Transition Diagrams (STD) representing
the actions of the nodes within the station model. Figure 9 illustrates the process model
fddi_mac as it appears in the Process Editor in the user interface window. Figure 10 shows
the on-screen menu that appears when the cursor is placed over one of the states (ENCAP
in this case), and the right mouse button pressed. Invoking the "enter execs™ attribute calls

the text editor shown in Figure 11. Here the user may inspect the programming code behind

19

Figure 9. Process Model "fiddi_mac" in User Interface Window

20

EX%

—

Figure 10. Process Model "fiddi_mac"® with On-Screen Attributes Menu

21

/0 A frme bas arvived fran & highac lopec; plase it in ‘piu per o/
PRI » 4 gk ot (g 0ampl 0)

'K
s
[}
'K
'
o
’
H o
g »
»
"
0
' F'
»
"»
]
"
]
9"
»n
n
=
i n
»
-
=
»
-
»

Figure 11. Process Model "fiddi_mac" with Text Editor

22

the model's behavior, and modify it if desired. Each state has its own section of code, and the
icons to the left of the window include additional editors, all described in Vol. 4.0, Too!/
Operations Manual. These are primarily variable and function declaration sections. The
entire code for the process may be called with the icon ".C," but this editor is for viewing
only. Any changes made in the ".C" editor will remain when the editor is dismissed, but will
disappear if the process is compiled. If calling the ".C" editor returns a ".C file
unavailable” message, then recompiling will generate the file again (sixth icon above the
lower "EXIT" icon in the Process Editor). Many UNIX stations include a cleanup command
that deletes certain temporary files upon logging out of the system, and the "C" language
codes ending . ".c” are not necessary once simulations are generated. They may always be
recovered by recompiling the models. (In the file directory containing OPNET?®, the model
source codes have the suffix " .pr.m".) If changes are made (in a proper editor), the model
must be recompiled. If several changes are being made within different sections, each may
be saved with the keystrokes <CTRL+S>, deferring compiling to the end. (The set of manuals
includes a summary page of OPNET®s text editor keyboard commands.) If desired, the
model may be saved without compiling by using the "Write Process Model™ icon. When
a process is changed, the station model in the Node Editor must also be called and written
afresh. Then the corresponding network model must be called into the Network Editor, and
be archived and bound again. If the modified process was not compiled earlier, then the

"c+A+B" icon will compile all the process models in addition to archiving and binding them.

23

a Source Node

The source node of the FDDI station model generates packets at a rate and
size specified by the user. It also determines the destination address for each packet, the
priority if applicable, and records the packet's creation time so that delay statistics can later
be gathered. These data are passed to the MAC for encapsulation. In the Node Editor, the
source is labelled "11¢_src.” and the process model is " fdd1_gen.”

In the source process' original form, as released by MIL 3, Inc. in version
2.4.A, the packet arrival (generation) rate is stochastically assigned on an exponential
distribution approximating that specified by the user. If a precise, invariant arrival rate is
desired, it may be assigned with the following change to the INIT state in the Process Editor,

where "constant" is substituted for "exponential” in the line:

inter_dist_ptr = op_dist_load ("exponential*, 1.0 /
arrival_rate, 0.0);.

A voice traffic transmitter station, for example, would require a constant
packet arrival rate from the source. Similarly, packet length is originally assigned a constant
value in the given model, but may be set to a stochastic approximation of the requested value

by replacing < “constant *> with < "exponential *> in the line:

len_dist_ptr = op_dist_load ("constant." mean_pk_len,
0.0);.

If all stations on the ring are to have the same assigned attributes and the

same source code (i.e., all < “constant *> or all < "exponentia] >), then the remaining steps

24

are to save and compile the process in the Process Editor, then call and save the station model
in the Node Editor, and finally archive and bind the relevant LAN model in the Network
Editor. If the stations on the LAN do not all have identical source code (i.e., some
"constant” and others "exponential”), then the modified process models and their
corresponding node models must be renamed. The following steps illustrate the creation of
a station modified to allow a ring to simulate a number of voice stations amid other
transmitters:

1. In the Process Editor, substitute “constant" for "exponential” in the
"fddi_gen” model's INIT state editor. Save the change by keying <CTRL+$>
while the cursor is inside the INIT state's editor.

2. Usethe "Write Process™ icon to save the modified process under a new name,
for example fddi_gen_const.

3. Compile the new process model, then exit the Process Editor.

4. The Node Editor is used to create and save a new station model, by calling the
original model and changing the "process model™ field in the on-screen menu
for the relevant node (in this example the " fdd1_gen™ process in the 11¢c_src
node is changed to "fddi_gen_const").

5. The new model is saved by invoking the "Write Node Model” icon. Exit the
Node Editor.

6. Inthe Network Editor, the desired stations on the relevant LAN are reassigned

using the on-screen menus: when the "mode1™ attribute field is invoked at a

25

particular station, a list of available station models appears, and the desired one
is chosen. If the expected model does not appear in the list, activate the User

Interface Window "Rehash™ icon to refresh OPNET®s access to recently

created files.

Desired stations are reassigned as required, and the LAN is saved, then re-
archived and bound.

Differently named models using the same functions may cause naming conflicts
at simulation run time. Should this occur, then the word "static™ must be
inserted in the Function Blocks ("FB™ icon) of both the original and the new
source model processes in the Process Editor, just prior to

fddi_gen_schedule().

The above steps illustrate a change made to the source code, and do not

represent the same situation in which identical stations are assigned different values in the

given on-screen attributes menus.

b. Sink Node

The 11c_sink node of the station model is the final destination of all

message traffic. The INIT state establishes counters to hold statistical information regarding

network performance (throughput and delay). The STATS state updates these counters as

packets are received. The DISCARD state reports the statistical information at specified

intervals, and finally destroys the packet. Because new packets are created for each

transmission, they must eventually be destroyed when received, or the host computer

conducting the simulation will soon fill its memory.

26

The "fddi_sink" model in the current version of OPNET® (Release
2.4.A, dated 02/27/93) is defective. It will cause the simulation to abort upon completion,
with the error message "Program Abort: packet pointer is NIL," in the event any
station did not receive traffic. Figure 12 illustrates the State Transmission Diagram as
originally given, and the corrected version is shown in Figure 13. The user should correct the
defective version, referring to Vol. 1.0, Tutorial Manual, "Bpt," pp.6-10. Saving this
modification requires the same steps described for the source model, with the exception that
no text has been changed. This defect and its correction are documented by Mil 3, Inc. as

OPBUG 2070.

MIL 3, Inc. maintains an electronic bulletin board containing information
on model corrections and upgrades between OPNET® revisions. Users may acquire these
upgrades using file transfer protocol (ftp) procedures to download desired files. Appendix
A includes a sample of dialogue used to acquire an upgraded file from MIL 3, Inc.

c. Medium Access Control (MAC)

The MAC process model encapsulates frames received from the source
node for transmission to other stations, maintains token holding and token rotation timers,
inspects received packets, decapsulates received frames, and determines token usability.
Vol.8.1.0, Example Models Manual, "FDDI," provides a detailed description of the MAC
process and of the functions of its component states.

The MAC model provided with OPNET® Version 2.4 A, (filename:

"fddi_mac.pr.m”) has been upgraded by MIL 3, Inc. and the newer model and

27

(detault)

Figure 12. Original (Defective) Sink Process Model

{default)
=27
(default) »
I 4
, (END_or_s1M)
\ .
~ \
~ « \
- \
{EXD_oF_SIM) <«
YN
[_sTars |

Figure 13. Corrected Sink Process Model

28

documentation are available via ftip on Intemet, under the subdirectory
“~/patches/2.4.8/opbug_2081". When retrieving a file via fip, the user should verify the
entire file is received by checking the file size listed on the bulletin board against the size of
the file received. Entering < "type image "> at the ftp prompt should ensure a full and intact
file retrieval. The original *fddi_mac.pr.m" file is then removed from the user's directory
(~/op_models/fddi), stored in a safe place, and replaced with the newer version. The new file
must then be compiled from the command window with the command, < “op_mkpro -m
fddi_mac ">, the procedure for which is described in Vol. 6.0, External Interfaces Manual,
*Env". It has been observed that the "drag and drop" method of transferring files in using the
File Manager in the SunOS Windows environment sometimes causes the subject file to gain
or lose a byte or two, leading to "bitsum error” messages when said file is compiled in
OPNET®. Standard UNIX commands are the most reliable method for moving OPNET®
source files.

The patch is not necessary to operate the simulation; it is a refinement of
the model, and will be included in the next revision of OPNET®. The patch OPBUG 2081
actually includes three repairs, documented as OPBUGs 2081, 2095, and 2097. OPBUG
2081 corrects existing timing and efficiency inaccuracies connected with the token
acceleration feature, by which the token is destroyed and the simulation enters a "fast
forward" mode in order to reduce the number of events while no station has a need to
transmit. In a real FDDI LAN, TRT is reset each time the token passes, whether or not the

token is used. The model in its original form allows the TRT timer to continue running when

29

the simulation enters “token acceleration," resulting in unexpected Late_Count occurrences.
OPBUG 2095 is also related to the token acceleration feature, correcting the existing
incorrect initialization of several variables when the simulation enters token acceleration. In
particular, the variable Fddi_Num_Stations. the number of stations on the ring, is always
reset to one, upsetting calculations predicting the proper location of the token at the end of
an idle period. Finally, OPBUG 2097 addresses the fact that the original model neglects to
properly account for the transmission delay associated with the token itself.
4. Packets
All communications between stations in a LAN and between the internal nodes
of a station are conducted using data framed into packets. The Parameter Editor, described
in Vol. 4.0, Tool Operations Manual, "Pm," is illustrated in Figure 14, which shows the
packet structure fddi_mac_fr, which is used to encapsulate the frames generated in the
Source node and sent to the MAC. Appendix B lists the five packet structures used in the
FDDI LAN simulation, giving their fields and assignments. OPNET® simulation does not
enforce limits on packet size required by the standard IEEE 802.5.
a. ICI Formats
Interface control information packets (ICI) are used for internal
communication within a station, reporting for example service options, error conditions, and
packet arrivals. Figure 15 shows the ICI Editor within the Parameter Editor, with the ICI
fddi_mac_req. This ICI specifies the control information passed from the source to the
MAC when transmission requests are generated. The ICI fddi_mac_ind specifies control
information passed from the MAC to the LLC when a packet has been received by a station.

30

i

g

|

oe_oddR

il
1

e

?

2

=

Figure 14. Packet Format "fddi_mac_fr" in the Parameter Editor

31

ralral sz — v

7] »
“l
il

Figure 15. ICI Format "fddi_mac_rec" in Parameter Editor

32

For OPNET® simulation purposes, both structures are created once per station in the
simulation , and reused as needed.
b. Packet Formats
Three types of packet frame formats exist in OPNET® to simulate
communications between the stations. For the simulation these are created as needed and
destroyed when no longer needed. Packets of format "fddi_11c_fr" are created in the LLC
source as arrivals are generated. The format has only one field, containing the creation time,
which is used to generate delay and throughput statistics when the packet is finally received
at its destination address. The packet format " fdd1_mac_fr" is used in the MAC state
ENCAP to encapsulate the generated packets for transmission on the LAN. The "info" field
contains the "fddi_11c_fr" structure providing the data of interest. Because OPNET®
simulates only the characteristics of transmission and not the actions of stations in response
to information received, the packets used are not precise replicas of real FDDI frames. The
token is represented by the frame format " fddi_mac_tk". The field "fc" is inspected by
each MAC process receiving a packet to determine whether it is a token or a message packet.
5. Environment File
Appendix C is an example of an environment (or configuration) file used to assign
station attributes to a 32-station FDDI LAN. Inspection shows that the fields specified in the
file correspond to the "promoted™ fields in the on-screen attributes menus that appear in the
Network and Node Editors, and to the fields in the Simulation Editor. Promoted attributes

may be assigned directly within these editors, a tedious and error-prone process at best. If

33

a simulation is begun with none of these attributes specified, OPNET® will prompt the user
for inputs at the command screen, another error-prone and tedious process. The environment
file is the most efficient way to assign parameters of interest, and may be quickly modified
between simulations, using the UNIX text editor. Vol. 6.0, External Interfaces Manual,
"Env," discusses the environment file, and points out that attributes assigned in the
environment file supersede those assigned in the Node and Network Editors. The file is
recognized to OPNET® by its " . ef" suffix. The assigned attributes are described in chapter
*FDDI" of manual Vol 8.1.0, Example Models Manual, and are presented here in their order
of appearance for summary and in some cases for required elaboration. The attributes are not
declared as variables in the "C" programs, but rather are generated by adding them to the on-
screen menus in the Node and Network Editors. The user can create new attributes by adding
them to the "extended attributes” field in the Node Editor, then including them in the
environment file. This procedure is discussed in Chapter III. "Env," pp.33-34, in the
External Interfaces Manual discusses the use of name wildcards in the attributes given below.
Sequence of entries is not significant in the environment file.
a "station_address”

This attribute is required for station identification; numbering of stations
is from zero to N-1, where N is the number of stations on the ring. The INIT state in the
MAC process calls this variable. Note that for quick changes to the file, lines may be

commented with the pound key <i#>.

34

b "ring id”

This attribute identifies the ring, in the event more than one may be
modeled simultaneously. It is set to zero if there is only one ring.

¢. "low dest address"

This attribute assigns the lowest identification address that may receive
traffic from this station. The use of the wild-card asterisk, shown in Appendix C, assigns the
same value to all stations. Quotation marks are used here because the attribute assigned has
spaces vice underscore marks between words.

d "high dest address”

This attribute assigns the high end of the range of addresses to which a
station may send traffic. It is used in conjunction with the previous attribute by the
"11c_src” process in the INIT state. It is permissible to limit the range of target addresses,
down to one, but all target addresses must lie in a contiguous sector. For example, the code
as given has no provision for allowing a particular station to send packets to two different
stations without also possibly sending to the stations between them.

e. "arrival rate”

This attribute assigns the rate at which the source process will generate
packets, and it is called by the INIT state. It may be set to zero for any station intended to
be idle. As originally used in the process code, arrival rate is a stochastic approximation
exponentially distributed about the assigned value. To make this a precise unchanging value,
as in the case of a synchronous voice transmitter, the code would have to be modified as

described in the previous discussion of the source process.

35

S "mean_pk_len"
Mean packet length is expressed in bits. Despite the name, this value is
actually held constant by the INIT state of the source process model. The user may modify
the code using the procedure described earlier to substitute < “exponential®> for

<{"constant > in the line:

Ten_dist_ptr = op_dist_load (“"constant,® mean_pk_len,
0.0),

which appears toward the bottom of the INIT state enter executives in the Process Editor.
Then the station will generate non-identical packets, which may be more realistic behavior.
OPNET® will permit any number of bits for the packet length; the user should know that
FDDI packets have 2 maximum size of 36,000 bits.

g "async_mix"

FDDI stations may generate synchronous and asynchronous traffic. This
attribute sets the proportion, with 1.0 indicating all asynchronous traffic generated by the
given station, 0.5 indicating half synchronous and half asynchronous. Any value between zero
and one inclusive may be chosen. The INIT state in the 11¢c_src model calls this attribute

with the statement:

op_ima_obj_attr_get(my_id, "async_mix", &async mix);

36

h "sync bandwidth”

This attribute is used in the MAC process, INIT state, where it is expressed
as a percentage of TTRT. It is analogous to SA; in Equation 1, but is numerically a fraction
of T_Req (TTRT), while SA, is an amount of time. Synchronous bandwidth should not be
confused with synchronous offered load. Bandwidth is expressed in time, while synchronous
offered load is a bit transmission rate. Therefore, synchronous bandwidth is the time allotted
for the transmission of synchronous offered load. It is entirely possible to set parameters so
that these two attributes do not match well.

In describing "sync bandwidth,” Vol. 8.1.0, Example Models Manual,
"Fddi", warns the user not to allow the sum of all assigned attributes "sync bandwidth®”
to exceed one, since OPNET® does not enforce FDDI protocol standards. However, this
warning neglects to consider the physical delay parameters in Equation 1, which indicate that
total synchronous bandwidth must be somewhat less than TTRT. The correct assignment of

“sync bandwidth” involves some algebra, and is perhaps best explained with an example.

Given: D_Max: 1.617 ms.
F_Max; 0.360 ms.
Token_Time: 0.00088 ms.
TTRT: 8.0 ms.

Using Equation 1 yields:
8.0ms. - (1.617 ms. +0.360 ms. + 0.00088 ms.) = 6.02112 ms. = LSA,
This is 6.02112 ms. of total bandwidth to be dividled among as many stations

assigned. Assume there are five such stations:

37

6.02112 ms. + § stations = 1.204224 ms = SA,
SA, is converted to "sync bandwidth® with a division by TTRT:

1.204224 ms. +~ 8.0 ms. = 0.150528
This is the value entered into the Environment file.

i "T Req”

This attribute is called in the MAC process, INIT state, and represents the
specified station's requested value of TTRT. A real FDDI LAN has a TTRT negotiation
phase; OPNET® simply chooses the smallest T_Req value available. The user may, but need
not set different values to each. This value is in units of seconds, which is not apparent from
the manuals nor from the default value that appears at the command prompt if no value is

assigned.
J "spawn station”
The spawn station is simply the starting point for the token, and may be
assigned to any station on the LAN.

k "station_latency”
This is the delay incurred by packets as they pass a station's ring interface.
Powers gives 1 usec. (1993, p.336); 60.0¢-08 sec. agrees with Dykeman and Bux (1988).
Station latency is a component of D_Max in Equation 1.
L "prop_delay”
Propagation delay is the time separating stations on a ring, based on the
amount of fiber between them. It is given here in seconds, and may be used to define the ring

size. The INIT state of process fddi_mac calls this value, which is used as one of the delay
38

parameters applied to transmission commands. FDDI standards limit the ring size to a
maximum of 200 miles of fiber (Dykeman, 1988, p. 997), and OPNET® assumes that the fiber
length is divided evenly among the stations. That is, all stations are evenly spaced on the
LAN in OPNET® simulations, whatever the number of stations and length of fiber. Dykeman
and Bux (1988, p. 1000) define propagation delay in units of time per distance, and give a
value of 5.085 us’km. The value given in the original example environment file, 5.085 x 10
seconds, corresponds to one kilometer of fiber between stations.
m. "acceleration_token"
This attribute speeds the . ulation by removing the token during idle
periods when no station has packets to transmit, significantly reducing the number of events.
n. "duration”
This is the simulated run time in seconds. Most systems should reach
steady state in less than a second.
o. "verbose_sim"
This feature enables on-screen reports regarding event numbers, time
remaining until completion, etc.
p- "upd_int”
This specifies in seconds the intervals at which to make on-screen

simulation status updates. It must be less than duration to be useful.

39

¢ os _file"

The output scalar file receives scalar data accumulated over several
simulations. It is useful in observing the effect of varying one or more attributes, for example
TTRT, over a series of experiments.

r. "ov_file"

The output vector file receives throughput and delay information relevant
to one simulation run. Output vector files can be quite large, on the order of several
megabits, and for this reason are often automatically deleted by a < *cleanup "> command
included in a UNIX station's logoff sequence. The user should aiter the filename or save
desired plots as . ac" files using the Analysis Tool, rather than log off planning to study the
vector data at some future time.

s "seed"

This is a constant used by the simulation's random number generator. It

may be any positive integer, but should be left constant once chosen.
t "debug"

This enables the Debug Tool, allowing the user to step through a simulation

one event at a time. Once enabled, the command < “help®> provides a listing of the

debugger's features.

40

D. SIMULATION

This section presents the steps involved in running a simulation and observing the
resulting output data. The user must keep in mind that OPNET?® is unaware of IEEE 802.5.
That is, it is the user's responsibility to ensure reasonable input parameters are assigned in
keeping with the established standards. The steps given will use the original model provided.

1. Build the LAN
If a 32-station LAN is not already available in the Network Editor, then one
should be created using the command < *fddi_build.em.x 32", as described earlier.

2. Correct "OPBUG 2070"

The simulation will abort if the original process model fddi_sink is used for the
SINK node 11c_sink, and some station happens to have not received any packets. The
correction described earlier should be applied, and the model recompiled and saved.

3. Implement "OPBUG 2081" Patch

As described eartier, this repair corrects minor timing inaccuracies in the model,
related to the token and to the token acceleration feature. The simulation will work without
aborting if the patch is not applied, but the user planning on implementing code changes
within the model over the long term should patch the model before doing so.

4. Update Environment File

Refer to the configuration file in Appendix C for input parameters. As mentioned
before, use of this file will save the user the effort involved in setting parameters by hand

through the Node, Network, and Simulation Editors. Note that attributes assigned in the

4]

Environment file will supersede any that are assigned through these editors. The file should
be given some distinguishing name, for example "fddi32.ef".
S. Generate Probe File

Use of a Probe file is optional. The process code as written will generate vector
file outputs only for overall throughput, delay, and mean delay. Additional outputs may be
monitored through the use of a Probe file, illustrated in Figure 16. Vol. 4.1, Tool Operations
Manual, "Pb," describes the Probe Editor. With it the user may monitor, for example, each
station's arrivals (packet generation) and throughput at any physical interface point on the
LAN, measured in packets and/or in bits per second. For simplicity, only packet arrivals at
station f11 will be assigned a probe in this simulation.

6. Simulation Editor

Figure 17 illustrates the Simulation Tool in the user interface window, with the
settings necessary to run this simulation. Use of this tool is discussed in Vol. 4.1, Tool
Operations Manual, "Sm". Fields are assigned by use of the cursor, and are filled by
choosing from on-screen menus or keyboard entry. The “Simulation” field should be
assigned the LAN filename, < fddi_32_net> (note that filename suffixes are not visible to the
user in the various Editors). The fields "Probe File”, "Vector File", "Scalar File",
"Seed”, "Duration”, and "Upd Intv1™ may all be left blank if they are assigned in the
configuration file; "Probe File" is optional in any case. The "Arg Name" field should be
assigned <environment file>, and the "Arg Value” field should be assigned the

<filename> given to the environment file. The user may then save the work area using the

42

C2 01 & A, ()) [LN

= =

TLC 0 A |]

n
Al
R
E
L
B
F_
9
X

L.\

m.m.. _,Em._n__m_

g IPROR SR CI® Iy]2

o B N H R

Aneivers i
| e —

43

igure 16. Probe Assignment

Fi

J0d_peupt_ces

Lect N 2tOR

Jat_op

SRt - Sastiw w bating fals b ame
Anmed iz ey, s rmamnd B
o reeet lacks
Lose amm {mesenye #42)

Figure 17. Simulation Tool

“Mrite Simulation” icon, to spare the effort of filling in these fields again on future
simulations.
7. Start the Simulation

Once the fields are set, the simulation is started with the "Execute Simulation
Sequence” icon. Had the user neglected to assign some parameter, the simulation will wait
until the command line prompt has been answered; the user shouid keep the command screen
in view. Upon completion ~f the simulation, a vector file (suffix " . ov") will be generated,
along with a scalar file (suffix ".os"). The “Rehash” icon must be invoked to refresh
OPNET®'s access to the files. Then the user may exit the Simulation Tool and enter the
Analysis Tool.

8. Analysis

Figure 18 shows the Analysis tool in the user interface window, whose operation
is explained in Vol. 4.1, Tool Operations Manual. The first action upon entering this tool is
to call the available vector outputs, using the "Npen Output Vector File” icon, then
selecting from the choices presented. If more than one are present, choose the one that was
assigned in the environment file. The on-screen menu will then disappear, leaving the user
to select the "Create Single Vector Panel” icon, which presents the on-screen menu
shown in Figure 18. The entries "end-to-end delay (sec.)”, "throughput
(bits/sec)”, and "mean delay (sec.)™ are generated directly from the SINK process
model. The remaining field, "ring0.f11.mac[0].pksize," comes from the Probe Editor.

Each may be plotted by selection with the cursor, then dragging the box corners to the desired

45

TR

| B TeY

m ~
<

E
3

Figure 18. Vector Trace Selection in the Analysis Tool

46

size. Having placed the panel, the plotted points are fired by clicking the left mouse button,
or by placing the cursor over the "Fire A11 Panels” icon and clicking the same button.
Figure 19 shows all four plots generated, placed together on the screen. The "Create
Multi-Vector Panel™ icon is used to place several plots in the same panel, an operation that
is meaningful when the Probe Editor is used to generate comparable outputs. Once the
desired plots are on the screen, they may be saved with the "Write Analysis
Configuration” icon, which will store the plots in a ™ . ac" file for later recovery. This is
important because the vector file will be written over the next time a simulation is run using
the same output vector filename. In addition, the UNIX station's logout sequence may
include a < “remove *.ov"> command to prevent the accumulation of large vector files in
memory.

The output scalar file, on the other hand, accumulates steady-state data over
several simulations, allowing the generation of plots showing, for example, the effect of
various TTRT values on total throughput. The user wishing to create su. a plot should
ensure the file is empty of previous data before commencing a series of simulations.

9. Debug Tool

The debug tool may be activated from the environment file. The command
<"help "> will list the available commands. The user may step through a simulation one event
at a time, or specify stopping points. The < *fulltrace "> command causes every variable

to be reported at each event, allowing the user to follow the sequence of events in a

47

1y ettt

|

1

\d

£

L J

XIT

ool: unsased
Masagiyst Bitesses) IIeS5) ungt. $33.000]0) . phadne
X H
[X]
18
[
1
ey
[X]
2 *
: : :
i i ;
) 4 + + 0 * 1 1 s
ame (s0e) e (vee)

are Pasel

1lee Trace fat Punel

Figure 19. Analysis Tool Display, Four Panels

48

simulation, and to search for logic errors should failures occur. Appendix D is a short section

of the debugger's output when the < *fulltrace®> command is active.

49

III. MODEL MODIFICATIONS

A. OVERVIEW

The FDDI station model provided with OPNET® is shown by Schenone (1993) to
perform as expected by performance equations provided by research literature, for example,
Dykeman and Bux (1988). However, the model as given lacks the flexibility to adequately
demonstrate the characteristics and metrics required to formulate recommendations for the
development of a CDL network interface. To begin, no way exists in the original model to
monitor the throughput and delay statistics of synchronous traffic separately from
asynchronous traffic. In addition, the code must be modified to allow the implementation of
different asynchronous priority levels, and further aitered to allow the generation of statistics
of these subcategories. Also desirable is 8 method to hold traffic in the sink process of one
station on the LAN, rather than destroying all packets, so that a bridging protocol may
eventually be developed for communication between LANS, which is the ultimate goal of the
Common Data Link Project. Finally, a multicast/broadcast facility, by which a packet may
be addressed to multiple stations, is needed. Modifications implementing these features were
generated for this thesis, and are described in this chapter. Appendices E, F, and G contain
the final form of the "C" programs representing the process models " fddi_mac_muit™,
"fddi_gen_mult", and "fdd{i_sink_mult", respectively. All contain inserted comments

to indicate where changes have been made. In some cases, modifications are extensive

50

enough that the original structure is not apparent. For these cases the reader who is
interested in comparisons is referred to the original code available in the Process Editor.

The modifications described here were suggested in large part from readings in the
research literature. In particular, Tari, Schaffer, Poon and Mick (1991) published resuits
generated from another commercially produced network simulation tool, the Block Oriented
Network Simulator (BONeS®), demonstrating that increased asynchronous offered traffic
load has minimal effect on the throughput of synchronous voice data traffic. At the same
time, the throughput of the various asynchronous levels was shown to degrade in order of
priority with increasing asynchronous offered load. These findings emphasize the fact that
OPNET® has no facility in place providing for the monitoring and plotting of throughput or
delay data in respect to class or priority levels.

Closely interrelated are the setting of asynchronous priority levels, a system of
subqueues to segregate traffic by priority, and the gathering and display of performance
statistics according to priority. In the following discussion, reference is sometimes made from

one to the others before all are complete.

B. PRIORITIZATION

1. Activating Prioritization in OPNET®'s FDDI Model
As given in the original released model, code exists to support a prioritization
scheme, but it is not implemented. The station model includes a priority field that may be set

in the Node Editor, but no setting will take effect until the INIT state in the MAC process is

51

modified. As given, T_Pri[i] is simply assigned the value <fad7_7_0Opr> (which is the
negotiated value of TTRT, with the negotiation consisting of selection of the lowest requested
T_Req from all stations) for all priority settings 1, resulting in no distinction made between
priorities. The state TX_DATA in the MAC process model contains the code that determines
transmission eligibility, then transmits packets if timing conditions are satisfied. The user
should notice here that unlike the real FDDI protocol, the Token Holding Timer is
incremented from zero to tht_value (THT), not decremented from THT to zero. This
results in a reorientation of T_Pri(i] settings, wherein higher settings allow a larger
transmission window, and therefore, higher priority. To re-emphasize: in the OPNET®
model, T_Pri[1i] is larger for higher priority stations. Actual settings of T_Pri[i] are a
matter of user’s choice and real-world physical characteristics. One quick approach is to alter

the code in INIT from the original:

for (i = 0; i < 8; i++)
{

)

T_Pri {i] = Fddi_T_Opr;

by substituting the text:

T_Pri (i) = (double)Fddi_T_Opr/(8-i);

to impart some weight to the priority settings (Appendix E, line 250). Note that priority

settings in OPNET® are counted from zero to seven, in keeping with the "C" programming

52

language convention of numbering elements of an N-element array from zero to N-1. As
mentioned earlier, actual FDDI convention numbers the priority settings from one to eight.
2. Changing the Scheme and the Code

For the purposes of CDL, an ability in a station to generate traffic of differing
priorities is a desirable characteristic. The modifications discussed here allow this behavior,
though with a certain amount of abstraction inciuded. Essentially, each packet generated in
the source process is assigned a priority setting, in a manner that is functionally identical to
the determination of the destination address. However, the priority of one packet has no
influence on the priority of the next one generated at the same station. Of course in
real-world transmissions, packets are grouped into messages, meaning that thousands of
consecutive packet arrivals should have the same priority settings to reflect real behavior. In
fact, the subqueue structure imparted to the MAC causes outgoing packets to be sent in
decreasing order of priority, thereby modeling expected behavior to some small degree. More
significantly, the user should keep in mind that the model's purpose is to model a LAN's
handling of the traffic it does receive. The fact that packets are transmitted with random
priorities in a scattershot fashion is not significant to the LAN's overall performance.

3. Subqueues

Because subqueues are essential to the development of the prioritization scheme,
their construction is addressed first. As is seen in the FDDI station model in the Node Editor,
the MAC node is represented as a queue. Therefore, only a change to "subqueue count”
field in the attributes menu is necessary to change the MAC's structure into a bank of

subqueues. Code is already in place that treats the MAC as a set of subqueues, aithough by

33

default, only one is available at first (this is labelled <subqueue (0)>, as is seen when the
"subqueues™” field is selected from the on-screen : ttributes menu for the MAC node. Nine
subqueues are desired here: one for each asynchronou. priority setting, plus another to handle
synchronous traffic. Subqueue indexing corresponds to priority settings, so that subqueue
(0) receives and releases the lowest priority asynchronous traffic, while subqueue (7) is
assigned the highest priority traffic. Subqueue (8) is designated for synchronous traffic. This
segregation of traffic into subqueues is necessary to support the recording of performance
statistics and plots of traffic generation through the use of the Probe Editor. Also, while the
Keme! Procedures (KP) available to the user include one that allows packets to be removed
from the transmission queue in order of priority, rather than in the usual first-in-first-out
(FIFO) order, subqueues allow simpler logic (Vols. 5.0 and 5.1 are directories of the
commands and functions used by OPNET®). Vol. 2.0, Modeling Manual, "Nddef," pp.
27-29, describes the procedure to adjust code so that references to queues may be replaced
with references to subqueues, particularly in relation to prioritization schemes. In summary,
the subqueues represent a way point for packets. They are created and assigned a priority
setting in the source, encapsulated for transmission in the MAC (ENCARP state), and placed
in the appropriate subqueue while the station awaits the next token arrival to transmit them.
a "RCV_TK"
In the RCV_TK (receive token) state, the first test of token usability is a

determination of the presence of outbound traffic. The statement:

if (op_q_stat (OPC_QSTAT_PKSIZE) > 0.0)
. etc ...

54

calls for an inspection of the queue. This statement is replaced with a loop structure that

searches all subqueues:

for (1 = NUM_PRIOS - 1; i > -1; i--)

{
if (op_subq_stat (i, OPC_QSTAT_PKSIZE) > 0.0)

... etc ...
(Appendix E, line 453)

Of course the above requires a declaration of the variable NUM_PRI0S and
the loop counter 1.

b. "TX DATA"”

The TX_DATA (transmit data) state contains the code that transmits
packets while the token remains available, and monitors THT. The THT (tht_value) is
checked inside a loop whose condition is, "while packets remain in the queue, transmit." This
loop contains most of the code in TX_DATA. This condition must be set inside another loop
which counts through each desired subqueue, and which must include an additional number

of "break loop" points. Accordingly, the code:

while (op_q_stat (OPC_QSTAT_PKSIZE) > 0.0)
{
/* Remove the next frame for transmission.*/
pkptr = op_subq_pk_remove (0,0PC_QPOS_HEAD);
. etc ...

is rendered into the following:

55

for (1 = NUM_PRIOS - 1; 1 > -1; i--)

{

while (op_subq_stat (i, OPC_QSTAT_PKSIZE) > 0.0)

{
/* Remove the next frame for * -ansmission.*/

pkptr = op_subq_pk_remove (0,0PC_QPOS_HEAD);
. etc .

(Appendix E, line 920)

The transmission loop is broken when any of the following occur:

»

No more packets are enqueued.

In the case of synchronous transmission, insufficient bandwidth
remains to complete a transmission. (Note that synchronous traffic
is allocated by the user an inviolate amount of time in which to
transmit, regardless of the lateness of the token. However, the
model checks the bandwidt:: -emaining to ensure a transmission can
be completed within the allotted time, and will not commence a
transmission that would delay the token. This is in agreement with
the actual protocol, and in contrast to the asynchronous case, in
which packet transmission may commence while the THT is active,
even if the transmission will keep the token past THT expiration.)
The remaining packets are of too low a priority to be transmitted in

the time remaining to THT (T_Pri[i] < THT).

After closure of the outer loop, the station deregisters its interest in the

token by indicating it has no more traffic to send. This information is used by the token

56

acceleration mechanism, which will destroy the token for the time period no station has traffic
to transmit, then recreate it when needed, thereby significantly reducing the number of ever.s
and the amount of time spent in a simulation. The original code appears at the bottom of the

TX_DATA state:

if (tk_ .sistered && op_q_stat (OPC_QSTAT_PKSIZE) == 0.0)
{

tk_ :gistered = 0:

fddi_tk_deregister ():

As before, this must be altered to search through a set of subqueues first

before deciding no traffic remains to be sent:

g_check = 1;

for (i = NUM_PRIOS - 1; i < -1; t--)

{
if (op_subq_stat (i, OPC_QSTAT_PKSIZE) == (.0)
{

}
else

{

g_check = 0;

q_check = 1;
break;
}
}
if (tk_registered && q_check == ()
{
tk_registered = 0;
fddi_tk_deregister ();

(Appendix E, line 1084)

57

4. Modifications to Prioritization
In order to enact the priority scheme described above, changes are needed in the
station model (Node Editor), all three process models (Process Editor), packet format
(Parameter Editor), and to the Environment file (UNIX text editor).
a Station Model Changes

For the modified priority scheme, new attributes are needed in the
on-screen menus that appear for the mac node of the fddi_station model in the Node
Editor. The original field "priority” is left in place, but not used. Note that the "super
priority” field (described in Vol. 6.0, External Interfaces Manual, "Rel," p. 15) is not
related to the FDDI protocol, but is a tool for scheduling of events in the simulation; it is not
used, and should be left disabled.

In order to support the priority setting protocol that occurs in the source
model (described later), two new attributes are created: "high pkt priority" and "low pkt
priority." The new fields are created as listed in the following steps:

1. Call the on-screen attributes menu for the "mac" node.

2. Place the cursor over the "extended attrs” field, and press the left mouse
button to call the submenu (the right mouse button dismisses the attributes menu;
try again).

3. Assign the fields as shown in Figure 20: names will be "1ow pkt priority®
and "high pkt priority"™, units are <noned, typeis <integer> (selected from

another on-screen menu that will appear,

58

(llc_src) Attributes

begsim intrpt : enabled
endsin intrpt : disabled
failure intrpts : disabled
recovery intrpts : disabled
priority : 0

super priority : disabled
icon name :

extended attrs.

Figure 20. Adding Extended Attributes to the Station Model

59

rather than typed in), and defaults are at the user's discretion. Zero for both are
reasonable. These assignments are preserved with the keyboard combination
<CTRL+S>. Further, the model must be saved using the "Write Node Model"
icon, as described in Vol. 4.0, Too! Operations Manual, "Nd," pp.13-15.

4. Once the model is saved, then called again to the Node Editor, unexpected values
will probably appear in the fields corresponding to the new attributes (which will
now appear in the primary on-screen menu as well as in the "extended attrs”
submenu). These values should be set to <promotea> so that they may be
assigned in the Environment file. To set the newly created field to <promoted>,
place the cursor over the field, then type <CNTL+0> at the keyboard, invoking the
literal "promoted.”

This last item is not described in the manuals; it was obtained from MIL 3,
Inc.'s technical support via electronic mail.
b. Environment File Changes
Corresponding to the attributes created and then assigned <promoted>

fields above, the following code is added to the Environment file:

**x * Ylc_src.high pkt priority” : 7
"* * Ylc_src.low pkt priority” : 0

The quotation marks are required here because of the spaces in the attribute names. Had
Tow_pkt_priority been used instead, then the quotation marks would have been omitted.

Examples of both styles appear in Appendix H, an example Environment file that includes all

60

attributes added to the model (some of which are still to be described). The Environment file
may be modified in the UNIX text editor. Pound signs (#) indicate comments. Order of
attributes is not significant, and any attributes not used by a model are simply ignored.
¢. Source Modifications

The approach to assigning a random priority to each packet as its arrival
is generated is functionally identical to the procedure by which the destination address is
generated. The OPNET® kernel function op_ima_obj_attr_get() is used to call attributes
from the node mode! or from the Environment file. The KP op_dist_load() is used to load
a distribution to be used in generating a stream of stochastic values. These are used in the

source process model " fddi_gen™ INIT state in the following manner:

op_ima_attr_get(my_id,"high pkt priority,
&high_pkt_priority);

op_ima_attr_get(my_id,"low pkt priority"
&low_pkt_priority);

pkt_priority_ptr = op_dist_load ("uniform_int",
low_pkt_priority, &high_pkt_priority):

(Appendix F, line 108)

In the preceding, the first two lines call the desired attributes from the

Environment file to the calling station ("my_1id"). The second field in the procedure call is
taken verbatim from the Environment file, while the third field is the address of the attribute.
The address may have any name; <&high_pkt_priority> is purely a memory aid for the
user, and is not required by syntax to resemble the field name to which it is assigned. The
value returned by op_dist_load() is used in the ARRIVAL state to finally generate the

priority setting with the statement:

61

pkt_prio = op_dist_outcome (pkt_priority_ptr);

(Appendix F, line 195)

which finally returns an integer between the values set in the Environment file. This integer

is assigned to the packet with the commands:

op_pk_nfd_set (pkptr, "pri", pkt_prio):
op_ici_attr_set (mac_iciptr, "pri®, pkt_prio);

(Appendix F, line 214)

Where only one priority setting is desired for a particular station, the

attributes need only be both set to that desired value, with the station specified in the

Environment file. A limitation here is similar to that of addressing: any section of values

from zero to seven may be chosen, but it is not possible, for example, to assign a station the
asynchronous priority settings two, four, and six.

In the Sv (State Variable) edit window, high_pkt_priority and

Tow_pkt_priority are declared as integers, and pkt_priority_ptr is declared as a pointer

of type "Distribution.” Because OPNET® uses a form of proto-C, the declarations made in

the editor actually have the following form:

62

Distribution* \pkt_priority_ptr;
int \high_pkt_priority:
int \low_pkt_priority:

(Appendix F, line 9)
When the code is compiled and the ".C" icon is invoked to present the

entire process model code, the above will have the following appearance:

Distribution* sv_pkt_priority_ptr;
int sv_high_pkt_priority:
int sv_low_pkt_priority;

OPNET?® will also produce the following in the ".C" code:

jidefine pkt_priority_ptr
pr_state_ptr->sv_pkt_priority_ptr

ftdefine high_pkt_priority
pr_state_ptr->sv_high_pkt_priority

fidefine low_pkt_priority
pr_state_ptr->sv_low_pkt_priority

(Appendix F, line 44)

The above commands have the effect of choosing, on a uniform

distribution, a priority setting from a given range whose endpoints are retrieved from the
Environment file.

d MAC Modificati. xs

Because a priority scheme is already supported in the original model, little

change is required in the mac node once a priority value is assigned in the source node. The

user should note that communication between nodes is conducted with locally held variables;

globals are avoided. This may result in different declared variable names for the same data,

63

which is acceptable. Thus, the pri of the source becomes the req_pri of the mac node. In
the MAC node, priority settings are used as the indexes for the subqueues. NUM_PRIOS is
declared for use as a loop counter.
e. Sink Node Modifications

The changes to the "fddi_sink™ process are nearly all related to the
generation of performance parameters, which are discussed in the next section. In the original
model, the received packet's priority setting is not even relayed to the sink, since the only
information necessary to the calculation of overall throughput and delay statistics are the
packet's creation time and its time of receipt. A fundamental addition to the code in the

DISCARD state is the line:

op_pk_nfd_get (pkptr, "pri®, &pri_set):

(Appendix F, line 78)
which recovers the priority from the field “pri* in the frame structure fddi_11c_fr. With
this information, additional modifications will bring about the ability to create throughput and
delay information for each asynchronous priority setting, and also to separate synchronous
traffic statistics from asynchronous. But before any of this will work, the fddi_1ic_fr
packet structure must be modified.

f Packet Format
The frame that is created in the source and passed to the MAC, then
encapsulated into a more extensive frame, then ultimately passed from the destination station's

MAC to the sink process for accounting and final destruction, is of the format fddi_11c_fr.

64

To support the prioritization scheme, the format needs to include more information than only
the frame's creation time. To enhance its characteristics, the Parameter Editor's "Packet
Format" icon is invoked, and the format fddi_11c_fr is called. Another line is added, as
shown in Figure 21, making “priority” an attribute of the packet. Type is set to
"{nteger, " size can be "0," default value is "0," and default set is "unset.”" The changes are

saved with the "Write Model” icon.

C. PERFORMANCE MEASURES

1. Overview

OPNET®s original FDDI LAN model provides no ready way to monitor
synchronous traffic separately from asynchronous, and no way to monitor the throughput and
delay statistics for individual asynchronous levels. The inability of OPNET®s original FDDI
model to provide anything besides overall performance is a serious limitation to its usefulness
in the CDL project. A major goal of this work is to augment the code in the sink process so
that additional output vectors are generated, allowing the effects on individual class and
priority levels to be seen. For example, in the original model, the user may assign any desired
proportion of the generated traffic to be synchronous, but the original model has no facility
to measure the synchronous traffic alone. The following paragraphs describe the
modifications made to allow the display of statistics segregated by class and priority.

As an incidental note, the user should realize there is no particular significance

to the sequence in which the states appear in the ".C" file. That is, the order DISCARD,

65

F

L o
2

Figure 21. Adding a New Field to the "fddi_llc_fr" Frame Format

STATS, then INIT that appears in the "fdd1_s1nk™ process code is no indication of the
sequence in which the simulation "visits" these states for each station. In fact, the more
logical order, INIT, DISCARD, then STATS will be followed in this discussion, though
preceded by a discussion of the variables needed. Appendix G is the file
“fddi_sink_mult.pr.c”, containing the modifications described here.
2. Variables

There are essentially four primary variables of interest in the sink process model:
fddi_sink_accum_delay, fddi_sink_total_pkts, fddi_sink_total_bits, and
fddi_sink_peak_delay. These exist as single integers or as floating point numbers, and are
incremented or recomputed as packets are received by the station. The overall idea is to
expand these into vector arrays, in which each element represents a running total for one
priority setting, with the last element representing synchronous traffic totals. As mentioned
earlier, this approach requires the "fddi_mac_fr" format in the Parameter Editor to be
modified to include the priority as a field, since the original model needs only the packets'
creation time and time of arrival in order to compute the overall throughput, mean delay, and
end-to-end delay. However, as was discovered through trial and error, while the given
variables can be changed to vector arrays, and the model can be modified to accommodate
the new structure, and the code will compile (if the syntax is correct), any attempted
simulation will abort with a segmentation violation error. This is because the "C" programs,
which may be modified by the user, must interface with OPNET®s kernel procedures, which

are beyond the user's access. Ultimately, the given variables must be kept and new ones

67

created. Since the overall performance remains a useful statistic, the variables mentioned are
left in place, while new ones are declared with the desired vector structure. These are
fddi_sink_accum_delay_a, fddi_sink_total_pkts_a, fddi_sink_total_bits_a, and
fddi_sink_peak_delay_a, which are declared and initialized in the Header Block.

The following declarations are added to the State Varnables section:

Gshandle \thru_gshandle_a[10];:
Gshandle \m_delay_gshandle_a[10];
Gshandle \ete_delay_gshandle_af9]:

Once compiled, the following appear in the ".C" file:

Gshandle sv_thru_gshandlie_a[l0];
Gshandle sv_m_delay_gshandle_a[l0):
Gshandle sv_ete_delay_gshandle_a[9];
fidefine thru_gshandle_a pr_state_ptr->sv_thru_gshandle_a
ffdefine m_delay_gshandle_a
pr_state_ptr->sv_m_delay_gshandle_a
fidefine ete_delay_gshandlie_a pr_state_ptr-
>sv_ete_delay_gshandie_a
(Appendix G, line 43)
With these declarations in place, the modifications to the rest of the code are
straightforward, and generally follow the examples set by the original code. In addition, the
variables Offered_Load and Asynch_0ffered_Load are declared for use in generating scalar
plots over a series of simulations. These are assigned values called from the Environment file

by the state STATS.

68

3. Initialization State

The primary purpose of the Initialization State is to assign handles to the global
statistics that are generated at the end of the simulation. The "KP" statement
op_stat_global_reg (<gstat_name>) returns a handle used to reference a globally
acce;sible statistic. This handle is needed to furnish new values (as they arrive with new
packets) for the "KP" op_stat_global_write(), which appears in the DISCARD state. The
field entry <gstat_name> is the text in the on-screen menu that appears in the Analysis Tool
when the Create Single Vector Panel or "Create Multi Vector Panel™ icons are

invoked. The code added is very similar to what is already in place. For example:

thru_gshandle_a[0] = op_stat_global_reg ("pri 1 thruput
(bps)®):

(Appendix G, line 325)
creates a handle for the collection of data for priority 1 level throughput, and creates a field

which will appear in the on-screen menu in the Analysis Tool. In another example:

m_delay_gshandle_a[9] = op_stat_global_reg ("async mean
delay (sec)"):

(Appendix G, line 364)
creates a handle for total asynchronous mean delay, and generates another field which will
appear in the on-screen menu in the Analysis Tool. Each priority level has its corresponding
handle assignment line. The actual statistics to accompany these handles are generated in the
DISCARD state. As seen in the code itself (Appendix G), each element has a handle

assignment line, for throughput, mean delay, and end- to-end delay. Figure 22 shows off the

69

resulting on-screen menu from the "Create Single Vector Panel™ icon, reflecting the
new data that may be plotted. Note that the code here reconciles “C" language vector
numbering conventions with real-world priority level settings.
4. "DISCARD" State

The DISCARD state is where the received packet is "opened” and statistics
generated from the packet contents. As mentioned before, “KP™ op_stat_global_write
(<gstat_handle>, <value>) is the statement that accumulates data. The <value> field
may be a previously computed figure, or may be calculated within the “"KP=. The
<gstat_hand]e> field is the same used in the INIT state. DISCARD uses the priority value

found with the arriving packet as the index for the vector structure. For example:

op_stat_global_write (thru_gshandle_a[5].
fddi_sink_total_bits_a[5] 7/ op_sim_time());

(Appendix G, line 128)
generates a current throughput figure for asynchronous priority level six (recall the necessary
offset for vector element numbering convention) Also necessary is the recording of delay

values for each priority, which is done with the following :

op_stat_global_write (ete_delay_gshandle_a[pri_set],
delay);

(Appendix G, line 182)
This state also destroys the packet once its contents are recorded. This is necessary to

prevent the simulation from filling the host computer's memory with dead packets.

70

pra 4 sad-to-amd dolay .
93 § ead-to-end dolay :

pry 6 end-ta-and dolay .
P 7 end-to-and dolsy (ves ;
pei 6 mam dalag (vee.) prs § end-ta-and doksy (eoe |
pea 7 soen dalay (eec.) opeh sad-to-ad dolay (sec)
"nlunth(m.) il ead-to-emd dolay (oec |

Figure 22. Newly Created Vector Traces Available

71

5. “"STATS" State
The STATS state produces the steady-state scalar data that may plotted using the
“Create Scalar Panel™icon. These are saved, rather than written over, so that the user
may observe changes to output as the input is varied. For example, the throughput of
synchronous traffic over several simulations as different TTRT values are used. From these,

a plot of throughput vs. TTRT may be generated. The statement:

op_stat_scalar_write (<{scstat_name>, {value>);

is similar to the "wr1ite” command described before, and writes a scalar steady-state statistic
in this case. The field "scstat™ appears in the on-screen menu called with the "Create
Scalar Panel™ icon. Examples of the use of this statement appear in Appendix G, lines
210-226.

Another on-screen menu line item is drawn from the Environment file. The
values <total_offered_load> and <asynch_offered_load> are placed and assigned in

the Environment file (see Appendix H), as described earlier. These correspond to the

72

variables Asynch_Offered_Load and Offered_Load declared in the header block. These are

joined by the commands:

op_ima_sim_attr_get (OPC_IMA_DOUBLE,
*total_offered_load"®, &0ffered_Load):

op_ima_sim_attr_get (OPC_IMA_DOUBLE,
"asynch_offered_load", &Asynch_Offered_Load);

(Appendix G, line 299)
and added to the on_screen menu with the commands:

op_stat_scalar_write ("Total Offered Load (Mbps)",
Offered_Load);

op_stat_scalar_write ("Asynchronous Offered Load (Mbps)",
Asynch_Offered_Load);

(Appendix G, line 305)

This code in Appendix G contains a warning to the user that the offered load

settings are not automatically updated in any way. If the user desires to plot throughout or
delay as a function of offered load over a series of simulations, then the user must remember

to keep the offered load assignments current in the Environment file for each simulation.

D. BRIDGE LINK

The alteration described here represents a simple first step toward a network interface.
Instead of destroying frames after they are received, one station on the LAN is modified to
hold its packets in subqueues. Further development will bring about a protocol for removing

these buffered packets from the original LAN and transferring them to another.

73

1.

Station Model Modifications

The received frames are stored in subqueues according to their priority in a

manner analogous to that already described for the mac node. This requires that the sink

node, 11c_sink, be changed from its original processor form into a queue node. To affect

this modification to the station model, the following steps are followed:

1.

The sink node is selected by placing the cursor over it and clicking the left
mouse button.

The node is removed by invoking the “"Cut” icon. The "Packet Stream"
between the sink and the mac also disappears.

The "Create Queue” icon is selected, and the resulting box is dragged to the
location just vacated. Clicking the left mouse button places the new node. The
station now has a queue node rather than a processor node.

The on-screen attributes menus is called with the right mouse button, and the
fields are all set to the same values that were in effect before, inciuding the node
name.

The "process model” field will be set to the newly modified sink process
niodel. If the process has not yet been modified, then the original assignment
may be used, then changed when the process has been modified and saved under
a new filename.

The "subqueues™ field is set to <9>, accommodating eight levels of

asynchronous traffic and also svnchronous traffic.

74

7. The packet stream line between the s ink and the mac nodes must be replaced.
8. The new station model is saved under a new filename, for example,
<*fddi_sink_1ink">.
Figure 23 shows the resulting station model, with the appropriate on-screen
attributes menu.
2. Process Model Modifications
The changes to the process model code are few, and are included in Appendix G

as inactive code ("commented out"). The code that destroys received packets:

op_pk_destroy (pkptr);
(Appendix G, line 98)

is replaced by code that enqueues the packets according to their priority settings:

op_subq_pk_insert (pri_set, pkptr, OPC_QPOS_TAIL);

(Appendix G, line 105)

The user should realize that for the moment, no more code exists for the

disposition of these enqueued packets; a long simulation simply accumulates packets and fills
computer memory. The subqueues are infinite by default, but may be limited (using another
on-screen menu) to demonstrate overflows. In that case, there is no code for the disposition
of packets that are lost through buffer overflow, and these will simply accumulate in the host
computer's memory as well. In sum, the user must be aware of the memory demands of

OPNET® simulations.

75

O -

subqueue (6)
subqueue (7)

subqueue (8)

1llc_sink

(Llc_sink) Attributes

name : 1llc_sink
process model . fddi_sink_link

subqueus count : 9
subqueue Po==>
intrpt interval : disabled
begsim intrpt : disabled
endsim intrpt : disabled

failure intrpts : disabled

recovery intrpts : disabled
priority : 0

super priority : disabled
icon name : queue
extended attrs.

Figure 23. Modified Station Model, "fddi_sink_link"

76

E. MULTICAST

1. Overview

Multicast is the addressing of a packet to more than one station. Broadcast is a
special case with the transmission of the packet to all stations. In the original model, a station
desiring to send the same message to all stations would repeat the packet transmission for
each destination station. Actually, this last is an abstraction, OPNET® simply generates
packets from each station addressed to randomly generated destinations, with no indication
that any particular transmission represents a copy of any previous transmission. However,
the fact remains that each packet is addressed to only one station. In the actual FDDI
protocol, each packet is passed from station to station until it reaches its destination, but then
continues past its destination until it is finally removed from the ring by its originating station.
The OPNET® simulation economizes on the number of simulation events (and therefore the
simulation time) by having the destination stations remove the packets they receive. This
occurs in the mac state FR_REPEAT, which also contains comments suggesting that the user
may wish to overrule this economizing feature in the event that group addressing is desired.
Figure 24 is the State Transition Diagram for the mac process, repeated from Figure 6 for the
reader's reference. The state FR_STRIP includes the code by which an originating station
removes packets that have completed a circuit of the LAN. It is not used in the original code,

nor will it be used in the modifications described here.

77

(dstanlt

—m——m————

Figure 24. MAC Process Model State Transition Diagram

78

The basic idea is as follows: rather than carry a destination address, each packet
carries an array with a number of elements equal to the number of stations on the ring. These
elements are simply ones and zeros, with a one indicating by its location that the packet is
addressed to a station corresponding to that location. For example, in a five station LAN, the
address field (0 1 0 1 1] would indicate the packet is addressed to stations one, three, and
four (as in the case of indexing vector array elements, the stations on an N-station LAN in
OPNET® are numbered from zero to N-1). As the packet is passed around the LAN, each
station inspects this array, passing the packet on if the station is not designated a destination
address. Destination addresses keep a copy of the packet's information, set their place in the
address field to zero, then pass the packet on to the next station. The last destination address
will destroy the packet after verification that only zeros remain in the destination address
array, thereby preserving some of the economy gained in minimizing the number of events in
the simulation. While the destination address array would need to be transported with each
packet, OPNET®s Kemnel Procedures can only accommodate a pointer to the array. The
following sections describe the changes necessary to effect multiple addressing. The reader
is again referred to Appendices E, F and G, containing the ".C" files for the MAC, source, and
sink process models, respectively. However, the implementation of multicasting involves no

changes to the sink process model.

79

2. Environment File
Each station is assigned a maximum and a minimum number of possible

destination addresses to use in addressing each packet. The following are added to the

Environment file:

"* * 1lc_src.min num addees": <user assigned integer>
** * 1lc_src.max num addees": {user assigned integer>

These will be called by the source process model's INIT state. Appendix H
contains an example Environment file including these new attributes. The minimum number
must be at least one, and the maximum should be no greater than N-1, where N is the number
of stations (the logic written in the source model's code does not allow stations to address
packets to themselves). if it is desired that some station generate no traffic, then the
"arrival rate" field should be set to zero. Setting "min num addees” and "max num
addees” to zero will only result in packets transmitted with no destination addresses
assigned. Setting "max num addees” to a number greater than N-1 will cause an endless
loop in the code that generates destination address assignments in the source process (the
logic in the loop is, "assign x different destinations, but do not repeat any.").

3. Station Model

The additions to the environment file must be added to the station model in the
Node Editor, in a manner analogous to the method described in the discussion of
prioritization (II1. B 4.a. Station Model Changes). The steps required to add another attribute

to the on-screen menu are not recounted here, but the desired final result is shown in

80

Figure 25. It is a good practice to save the changed station model under a new name, for
example < *fddi_sta_mult ">, until the user is certain that the modifications do more good
than harm to the original model.
4. Source Process Model

A real packet on a real LAN would necessarily be self- contained, carrying with
it all its destination addresses. However, the functions used to assign the packet address field
in OPNET® will not support a vector structure, and so pointers to memory locations must be
used, with these memory locations containing the destination addresses. The modifications
to the source process to effect multiple addressing are summarized in the following sections.
As is the case with the station node model, each of the process models should be saved under
new names, for example fddi_gen_mult, as a matter of practice.

a Variables

To begin, a global variable, NUM_STATIONS, is defined in the Header Block
(it is also defined in the mac process model), to be used as a loop counter. This variable must
be kept updated to accurately reflect the correct number of stations on the FDDI LAN. This
is easily forgotten when different LANs are created, using the same station model with
different numbers of stations.

As was mentioned, the destination address field, originally a single integer
value, must now be made a pointer to an array of integers. Although "C" programming
language treats the name of a vector array as the array's pointer, the established Kernel
Procedures do not support the simple change of syntax. In short, a new variable, *da_ptr
(destination address pointer), is declared as an integer pointer in the Temporary Variables

81

O—u-8
O

(lic_src) Attributes

icon nane : processor
extanded attrs -=>

high pkt priority - promoted
low pkt praiority promoted
ain mm addees - promoted
aax mm addees . promoted
low dest address : promoted
high dest address : promoted

{Llc_src) Attributes

name : ‘
process model : fddi_gen_mult K
intrpt interval : disabled |
begsia intrpt : enabled
endsia intrpt : disabled
failure intrpts : disabled
recovery intrpts : disabled
priority

Figure 25. Multicast-Capable FDDI Station with Attributes Menus

82

(TV) editor. The original variable, dest_addr, is removed from the TV section, and declared
with the State Variables (SV) as an array of integers, with dimensions [NUM_STATIONS + 1].
In addition, variables to accompany the Enviroqment file attributes are declared with the
State Variables: min_num_addees and max_num_addees. The resemblance between these
variables and the attributes they accompany is meaningless in respect to "C" language syntax,
but is of course a useful memory aid to the user. The pointer num_addees_dist_ptr
represents the value used in determining stochastic values. Also, the integer num_addees is
declared in the State Variables, to represent the number of stations to which a given packet
will be assigned. It is used as a loop counter, and will be different for each packet.
b. Initialization State
In the source model's Initialization state, the range bounding the number

of destination addresses is determined with a cali to the Environment file:

op_ima_obj_attr_get(my_id, "min num addees”,
&min_num_addees):

op_ima_obj_attr_get(my_id, "max num addees”,
&max_num_addees):

(Appendix F, line 86)

83

These result in the assignment of the values from the Environment file to

the addresses of the corresponding variables. A distribution is established with the following:

num_addees_dist_ptr = op_dist_load (“uniform_int",
min_num_addees, max_num_addees);

(Appendix F, line 114)
This value is used to generate streams of stochastic values, and is used in

the ARRIVAL state.

¢. "ARRIVAL" State

In the ARRIVAL state, the actual number of stations to receive the new
packet is determined, and then a loop is used to choose these stations one at a time. Each
loop iteration is very similar to the original procedure that was in place when only one station
was assigned to each packet The loop contains a provision to prevent the repeated
assignment of the same station, and also to prevent the assignment of the oniginating station
as a destination address The following statement determines the number of destination

addresses for a given packet

num_agdees = op_dist_outcome (num_addees_dist_ptr);

(Appendix F, line 172)

84

The following loop is used to find and assign the chosen stations:

for (i = num_addees; i > 0; i--)

{
gen_packet:
nix = op_dist_outcome (dest_dist_ptr);
if (dest_addr[nix] == 1 || nix == station_addr)

{

goto gen_packet;
}
dest_addr(nix] = 1;

(Appendix F, line 174)
This loop continues to iterate until the specified number of stations, without repetition, is
assigned.

Recall that the destination address array is declared with one element more than the
number of stations in the LAN (dest_addr [NUM_STATIONS + 1]). Here, all the elements
in the destination array must be shifted one space to the right, and a simple loop is used to set
dest_addr[i+1] equal to dest_addr([i], for i iterations. This step is necessary because
the first array element will be overwritten with the array's memory address in the course of
the packet's travels, as it is transmitted from one station, received by the next, and its
destination address field is opened, inspected, then closed by each station in turn. This
behavior is verified by use of the debug tool set to "fulltrace.” accompanied by
strategically placed printf statements. The author does not pretend to know why this
happens. The array element shift is a deft enough way to sidestep the problem. However,
all references in other states to the destination address array must be offset to accommodate

this shift.

85

S. MAC Process Model
The MAC process model receives each packet, inspects it, the decides whether
or not the packet is addressed to the station. In the original model, the packet is removed
from the ring by the destination station, and relayed by other stations. With multicasting of
packets, a third case arises, in which a station receives a packet addressed to it, but must also
pass the packet on to other destination stations. A number of print commands are placed in
the code, but left inactive. They are of much use in the verification of the model's operation.
a. Variables
The same vaniable NUM_STATIONS used in the source model is also defined
in the Header Block of the MAC. The user must remember to keep this value updated in both
places when the same station model is used in a different size LAN. The destination address
is changed from an integer into an open-ended array of integers, dest_addr(], in the
Temporary Variables editor. An integer pointer, *da_ptr, is declared as well.
b. Encapsulation State
The Encapsulation state receives frames from the source process, and place
them inside the format fddi_mac_fr for transmission on the LAN. An intermediate step is
to inspect the frame received from the source for its destination address, which must be
written into the encapsulating frame's destination address field as well. The original

statement:

op_ici_attr_get (ici_ptr, "dest_addr", &dest_addr):

86

is unworkable with dest_addr in array form, which is why the pointer *da_ptr is declared.

Instead, the following is used:

op_ici_attr_get (ici_ptr, “dest_addr", &da_ptr):

(Appendix E, line 806)
followed by a loop assigning each element in the array a value from the corresponding
element in the array found at address da_ptr. Vol. 5.0, Simulation Kernel Manual, discusses
this command statement. This loop uses as a counter the value NUM_STATIONS+1, for the
reason mentioned earlier: use of a printf statement would reveal that the first element in
the array has been written over and replaced with a number represcnting the memory address
of the array. Fortunately, the entire original array of zeros and ones has been shifted, so the
first element is intact. Correspondingly, all references to the array from within the MAC
process must be made with respect to this shift.

c¢. Frame Repeat State
The Frame Repeat state inspects each received packet and acts on one of
three cases: the packet is addressed only to this station, or the packet is not addressed to this
station at all, or the packet is addressed to this station and to other stations as well. The first
two cases are already present in the original model, and require some simple modifications.
The third case represents a significant change, requiring the addition of an entire block of
code to the state, in which the packet information is copied first, then passed on to the next

station.

87

The first statement in the FR_REPEAT state opens the arriving packet's

address field for inspection:

op_pk_nfd_get (pkptr, "dest_addr®, &da_ptr);
(Appendix E, line 604)
Here, &da_ptr has been substituted for the original &dest_addr. As is the case in the
ENCAP state, the arriving pointer is used to initialize the locally held destination address

array:

for (i= 0; 1 < NUM_STATIONS+1; i++)
dest_addr[i] = da_ptr(i];

(Appendix E, line 610)
This destination address array is then passed through a loop to determine if it has more than
one destination address, and to see if the element corresponding to this station is set to one,
indicating the packet is addressed to this station. If the packet proves to be addressed to this
station only, then the actions of the original code are carried out: relevant fields are copied
to an ICI packet format for transmission to the sink process, then the packet is destroyed.
If inspection of the destination address array shows the packet is not addressed to this station
at all, the original code is again sufficient to place the packet back on the ring.
The third case represents a new situation. When the packet is addressed
to this station and to others as well, the information must be saved here, and be transmitted
onto the ring again. These actions are carried out with commands borrowed from the first

two cases, and include some new considerations as well. The function "op_pk_nfd_get()"

is used to retrieve data from specified fields in the packet. That is, it is a decapsulation
function. When the data happens to be in a structure format, the function has the effect of
destroying the information. This is an important point because the information must be

preserved for retransmission. Therefore the function:

op_pk_nfd_get (pkptr, "info", &data_pkptr);

(Appendix E, line 719)

must be followed at some point with the statement:

info_ptr = op_pk_copy (data_pkptr);

(Appendix E, line 727)

in which info_ptr has been declared in the Te:::;porary Variables to have the same type as
the structure in the "info™ field. When this information is summoned for re-encapsulation

with the function:

op_pk_nfd_set (pkptr, "info", info_ptr);

(Appendix E, line 747)
the field information has been preserved. The other fields, "src_addr™, "dest_addr", and
"pri”, do not require this procedure, since they are not lost with decapsulation. Two
packets result: one is an ICI frame carrying the received information to the sink process, and

the other is a re-encapsulated packet sent to the LAN. The station's last action before

89

re-encapsulating the destination address array is to zero its corresponding address element.
The last station to receive the packet will destroy it, upon determining that only zeros remain
in the destination address array (Appendix E, lines 644 and 692).
6. Limitation

The primary limitation of the model with muiticasting active is in the generation
of throughput and delay statistics. As the code currently stands, each packet is counted by
every station that receives it, leading to multiplication of throughput data. On the other hand,
some use may possibly be made of this characteristic by comparing the tallied throughput
against the actual offered load, as a measure of the effectiveness of the multicasting scheme.
For example, a measured throughput of 100 Mbps versus a known offered load of 50 Mbps
could indicate that multicasting effectively generates SO Mbps without physically taxing the
bandwidth capability of the FDDI LAN, since no additional packets are generated.

IV. MODEL TESTING

This chapter provides several test results intended to verify the enhanced capabilities
added to the basic FDDI station model in OPNET®. In addition to improving the
performance and display features, the modifications must preserve the basic behavior to be
useful. The tests presented here include an illustration of the model's treatment of
synchronous and priority-based asynchronous traffic, a simple demonstration that the
modified sink progess does indeed store the traffic it receives, a check against theoretical
performance equations, and a demonstration on the monitoring of multicast.

Not all of the modifications described in this thesis are incorporated simultaneously
in all station models. The State Transition Diagram correction to the original fdd* sink
process model is of course installed in all models that use the 11c_sink node. Likewise,
the patch for OPBUG is installed for all MAC model versions. The generation of
randomly differing priority assignments for all packets is closely interrelated to the
generation of output statistics segregated by class and priority; both involve extensive
modifications to the original process models for the source, sink and MAC, which are
stored as fddi_gen, fddi_mac, and fddi_sink. (The actual file names found in the
UNIX subdirectory have the suffix ".pr.m,” and when these are compiled,
corresponding files with the suffix ".pr.c" are created.) The original models of those
names are retired under the ending "_orig.pr.m.” Likewise, the original node-level

station is stored under the name fddi_sta_orig, while fddi_station is the upgraded

91

version. The multicasting capability is stored in a separate station model, fddi_sta_mult,
which includes the processes fddi_mac_mult, fddi_gen_mult, and fddi_sink_mult, and
contains all of the other modifications as well. The multicast capability was the last feature

installed for this thesis, and has not been completely developed.

A. SYNCHRONOUS THROUGHPUT

1. Overview
This test was motivated by an earlier study, in which a software simulation tool
was used to demonstrate the effect of increasing offered load on the asynchronous and
synchronous throughput of an FDDI LAN. Using the Block Oriented Network Simulator
(BONeS®), Tari et. al. were able to show that synchronous throughput does not degrade
appreciably, even when the offered load is well in excess of 100 Mbps. They were able
further to show the decay in throughput suffered in the asynchronous priority levels as offered
load is increased. Figure 26 is taken from this study. In addition to providing an idea of
expected performance, this figure also highlights the fact that in its original form, OPNET®'s
FDA model provides no method to display any throughput data other than the overall
performance parameters, total throughput, total mean delay, and total end-to-end delay.
2. Setup
The set up was intended to imitate the older experiment as closely as possible.
Ten simulations were conducted using the same 50-station LAN. Ten stations (f0, f5,

f10, f15, f20, 25, 30, 35, f40. f45) were designated "constant” generators.

92

‘“

FEDI Veies/Dsts Nawmrh Besuiss (Throughvut)

fotal Tattse (Vi & Sote)

$

8

Throughput (Mbps)

Figure 26. Throughput Measurements Using BONeS® (Tari, et. al., 1988, p. 58)

93

That is, they were modified inside the source process "C" code to generate packets at a
constant rate, rather than at an exponentially distributed approximation of the rate specified
in the Environment file. These ten stations transmitted synchronous traffic only, while the
other 40 stations were allocated no synchronous bandwidth, sending asynchronous traffic
only. The synchronous stations generated 512-bit packets at a constant arrival rate of 6000
packets per second. The asynchronous stations transmitted 1000-bit packets, at a rate
stepped so as to increase the total offered load by 10 Mbps in each simulation. Therefore,
total offered load ranged from 40.72 Mbps to 140.72 Mbps over ten tests, with steady state
data recorded in a data file of scalar data. TTRT was set to 10.7 ms, in order to support the
delay of 50 stations on a 50 km ring while maintaining ' SA; > 10 ms. This differed from the
older study, for which a TTRT value of 8.0 ms was used, despite the authors' stated intention
to model voice network traffic. As noted by Powers (1993, p.340), synchronous voice
transmission requires that the token visit each voice transmitter every 20 milliseconds,
resulting in YSA, = 10 ms. This in turn requires TTRT to exceed 10 ms by an amount
sufficient to account for physical delays inherent to the ring fiber and the stations.
Asynchronous priority threshold levels. T_Pri[1i], in the INIT state of the MAC process
code were set in increments of 0.125 TTRT, so that Priority 1 traffic transmission was cut off
when THT incremented to 1.3375 ms, and Priority 8 traffic could be sent for the entire THT
period. Recall that this incrementing THT is a function of OPNET, reversed from the

decrementing timer described in most literature.

94

3. Results

Figure 27 shows a plot of total throughput over a series of ten simulations in
OPNET, demonstrating a roughly linear rise until the offered load begins to exceed 90 Mbps,
which is in qualitative agreement with the older experiment, and agrees with resuits published
by Dykeman and Bux (1988, pp. 1003-1007). This plot also serves to show off one of the
model's improvements in data display, allowing "0ffered Load" to be an abscissa for scalar
plots.

Figure 28 illustrates the fact that synchronous bandwidth allocation is not affected
by the asynchronc::* offered load; therefore, synchronous throughput remains nearly constant
as the offered load is increased.

Figures 29-31 illustrate the effect of increasing offered load on the throughputs
of asynchronous traffic at priority levels two, three, and four, respectively. No priority
settings above four suffered any degradation within the range of offered load observed in this
test. The decay of Priority 3 traffic at approximately 100 Mbps of offered load suggests that
(3%)TTRT may be a guiding point for setting priority thresholds that will take effect before

the LAN's capacity is reached.

B. PRELIMINARY LINKING MODEL

1. Overview
The modifications made to the sink process as a step toward a bridging node are

the simplest of all described in this thesis, and the testing of the finished model is also simple.

95

“n

o 3 “ Ll - ») 0 " i e
Total Gftesnd Lead GEpe)

Figure 27. Total Throughput vs. Total Offered Load

i ; i i
: i i i 1 1
H ! ! !
H i { H
s] & - — e
—4 g + g
. : ; .
. ; ;
i 1 i i i i
N — - : H
o T 14
! ! l
: H H
1 i
SRS SIS SV SR S SO O S
- ——— —— ...(;. B s s e 4 - PSR e e
1 ' 1 i
. i !
1 1 1 1 1
: '
--------- - H 'A - D - - - e — - -
i T ? ?
: i : t i
i H i i 1
¢
—

.0] “ ” .“" ”» tL] e e 1 bl
Total otfared Losd Ompe)

Figure 28. Synchronous Throughput vs. Total Offered Load

96

1
i
+
i
i
i
f
{
! !
i
i
t
i
1
i i
. !
e e me e]
' : 3
! ! !
| At
" ! : i

5 “) *»] 3 [T e 1)
fetal stfamd Load Gibpe)

Figure 29. Priority Two Throughput vs. Total Offered Load

' ' : 1 ' 1
‘ ' : i t 1
[] .] ! :
e - o o S St e e o0 e m # ot e ¢ ann s e
' . ! ! H
' i
: , i , :
—— —— .5_>-_...+.__.—__.__.._e...-.,_._._f.- :
' : 1 1
3 H H .'
. i
H . 1 . i i 3
t . : : : :
: . : ' : ¢
t . 1 . H t i
t 1 t : H
t . : : : :
: : : i H i
1 ‘ i 1l i
. K i : H
1 ' i i]
: : 1 ¢ t
' 1 1 : 1
' ' i i i
! : { ' '
+ i 4 i H
1 Y 1 1 '
: H H : :
i i i i i
I 1 i 1 1
N i H H R
1 t et 1 1
H H ' :
E H H 1 1
. ceanl ¢ ! ! N
e e — ———
» ”» »

% e] [T 1 ‘e
Tatal sftend Lead fmpT)

Figure 30. Priority Three Throughput vs. Total Offered Load

97

! N
, i
=
! ! ‘ !
i !) }
! . i i
: j ! {
t i | ' i
: ‘ ! !
: i !
1 ! 4
e ; !
H ']
f ; | i
!
—$\~
* ; , i
[[] ”) »] 230 18 1% [

Total otfered Lood QBps)

Figure 31. Priority Four Throughput vs. Total Offered Load

98

Itis necessary only to show that all the traffic transmitted to the station is received and held.
To demonstrate this action, a ten-station LAN was created, with station f9 designated the
link node. The Environment file assignments were made so that all stations directed all traffic
to station f9, which itself was not transmitting. A modest offered load was used to prevent
an overload of packets in the simulation host compute:’s memory. All transmitting stations
were assigned the same full range of asynchronous priority settings, and were assigned equal
portions of synchronous bandwidth. Each of the buffers at station f9 should have then been
seen to receive packets pre-sorted for eventual transmission. The Probe Editor was used to

monitor "pksize,” the number of packets in each subqueue of the modified sink process

model.
2. Setup
The following calculations and Environment file settings in Table 1 were chosen
as reasonable:
Table 1. ENVIRONMENTAL FILE SETTINGS.

packet size: 2000 bits

arrival rate: 10 pkt./sec.

offered load: 9« 10 » 2000 = 180,000 bps.

TTRT (T_Req): 0.004 sec.

async mix: 09

prop delay: 5.085 x 10 sec./km. x 1 km.) = 5.085 x% ser.

station latency: 60.0 x 10 sec.

D_Max: (5.085 usec. « 10) + (60.0 x10 « 10) = 0.05685 ms.

F_Max: 0.360 ms.

Token Time: 0.00088 ms.

synchronous BW: 4-(0.05685 + 0.360 + 0.00088) =4 - 0.41773 = 3.58227 ms.

99

Dividing bandwidth evenly among 9 stations gives the following:

3.58227 ms.
9 stations

= 0.39803 ms./station. ().

This result is compared with TTRT to determine the "sync bandwidth” attribute

0.39803 ms.
4.0 ms.

= 0.0995075 ms. A3).

which is a unitless fraction of TTRT.
3. RESULTS
The given parameters were applied, and the receiving buffers were inspected at
the end of one second of simulation time. Figure 32 is the plot obtained illustrating the
accumulation of packets in all nine subqueues. (Although all the plots may be placed in one
panel, the data are divided into two panels for readability of the hardcopy). The plots show

the following after one second:

Table 2. SUBQUEUE ACCUMULATION

subqueue(0): 13 packets
subqueue(l): 11 packets
subqueue(2): 10 packets
subqueue(3): 7 packets
subqueue(4): 7 packets
subqueue(5): 12 packets
subqueue(6): 11 packets
subqueue(7): 10 packets
subqueue(8): 9 packets

.......................

total: 90 packets

This agrees with the given packet generation rate of 90 packets/sec., and verifies that the
preliminary linking model holds all received packets on station.

100

® ving®.29. 11s_sisk(0) . phsase
© ringt. 19. La_siak{3). phsize
O cingt. £9. 11a_sink[2].phsase
A Tingd. 19 Lls_siak{S) piresse
Q rimg®. £9. Lis_sioh(4] phsise

as
12.8
1¢
2.8
s
2.5
r——
*e ¥ 0N X3 ry 3
time (se0)
® camgl. 29 Lls_siak($] phsise
© camng®.£9. LAs_sink{$)] phsize
O zamg®. £9. 100_sink(?] phsise
A ting®.£9. LAs_sink($) phsise
2.5 et —————————————————

; g

2.5

. L] .15 as [5,3 1 1.3

une (se0)

Figure 32. Packet Accumulation at Linking Model "fddi_sink_link"

101

C. SYNCHRONOUS TIMING

1. Overview
In order to preserve the real-time nature of synchronous traffic, the bandwidth
allocated to a given station may not be exceeded. Although transmission time (bandwidth)
may remain to a station, the protocol determines a priori whether the next packet transmission
would cause the allotted bandwidth to be exceeded. If the bandwidth limit would be
exceeded, then the station will not transmit. The code in the TX_DATA state of the MAC
process ensures OPNET®'s FDDI LAN models adhere to this béhavior, as shown in the
following simple experiment.
2. Setup
A new LAN was created, using 13 stations on 91 km. of fiber, resulting in seven
kilometers of fiber between stations. The odd figures were chosen in order to avoid
symmetries in the arithmetic involved, thereby enhancing the instructional value of the test.
All 13 stations were assigned an equal portion of the total available bandwidth for
synchronous traffic, and all stations transmitted only synchronous traffic. Physical attributes

were identical for each station. The following calculations apply:

102

Table 3. 13-STATION LAN ENVIRONMENT SETTINGS.

prop_delay: 7 km. « 5.085 x 10 sec./km. = 0.0355950 ms.
station latency: 60.0 x 10°* sec./station
F _Max : 0.360 ms.
D_Max (13 stations » 60.0 x 10™* sec./station) + (13 links e
0.035595 ms./link) = 0.4627428 ms.

Token_Time : 0.88 usec.

D Max +F_Max + Token_Time = 0.8236228 ms.
TTRT: 4.0 ms.

TTRT 2 Y SA; +0.8236228 = Y SA,; < 3.1763772 ms.
Divide the synchronous allotment evenly among 13 stations:

3.1763772 ms./ 13 stations = 0.2443367 ms./station.

Given the standard transmission rate of 100 Mbps, each station may transmit
24,433 bits with its synchronous allotment. This bandwidth is converted to a fraction for the

Environment file attribute “sync bandwidth":

0.2443367 ms.
4.0 ms.

= 0.06108418 4).

For this test, all stations were constant transmitters. That is, the code for the
source process was adjusted so that packet transmission rates and packet lengths were
assigned invariant values, rather than stochastic approximations of the attributes assigned.
A TTRT of 4 ms indicates 250 token passes per second, which was chosen as the packet
arrival rate for all stations. Packet size was 24,000 bits, resulting in a total offered load of
78.0 Mbps. A larger packet size, for example 25,000 bits, should be too large to transmit,
resulting in no throughput at all.

103

3. Results

Figure 33 shows the resulting total throughput derived from the given setup.
Invoking the "convert to text” attribute of the on-screen menu indicates a value of 77.7
Mbps after one second, with a slow rise still in progress. This is in close agreement with the
offered load.

Figure 34 is an empty panel, accompanied by a text screen indicating that no
throughput results when the packet size exceeds that allowed by the synchronc':« bandwidth
assignment. In this case, packet size was increased to 25,000 bits. Arriva. . was also
reduced to 100 packets/sec., resulting in a total offered load of 32.5 Mbps. Figure 35
illustrates the accompanying accumulation of packets in station f3's subqueue(8), which is
reserved for synchronous traffic. The perfectly linear shape is a result of the constant arrival

rate assignment.

D. ASYNCHRONOUS EFFICIENCY

1. Overview
A network's throughput efficiency is calculated from the following equations,

which assume that only asynchronous traffic is being transmitted:

104

(TN+D)
where:
N = number of stations,
T=TTRT and,
D = ring latency (total time required for a token to circulate the ring in the
absence of data traffic).
Ring latency D is in turn defined as
D=L +NT, (6).
[
where

L = length of ring in kilometers
"/, =5.085 x 10 sec./m.
T, = token processing time (0.88 us.)

(Powers, 1993, pp. 336-337; uses T, = 1.0 us. as a typical value)

The same 13 station, 91 km LAN described previously was used here, with the Environment
file adjusted so that no synchronous bandwidth was assigned, and only asynchronous traffic
was generated. Offered load was 78.0 Mbps. The given equations indicate the expected

efficiency is 87.44%.

105

Figure 33. Synchronous Throughput: BW Exceeds Packet Transmission Time

Figure 34. Synchronous Throughput: Packet Transmission Time Exceeds BW

wial Mssgiyet Gps) talese?

L [X}

total hovagiput Ope)

LX) e .5 [X)) [X) (X} .9
wusa (see)

-
]
-
-
-
A m————

1
tme (se¢)

106

2. Results
Figure 36 illustrates the resulting throughput, 68.48 Mbps, which is 87.79% of

the offered load. This agrees quite well with the predicted throughput.

E. MULTICASTING

1. Overview

The multicasting function is designed to assign to each packet a randomly chosen
number of destination addresses, then to use this selected number as an index for a loop in
which a different destination address is assigned on each iteration. Upon completion of the
loop, a vector array of ones and zeros has been created, in which a one in position i indicates
the packet is addressed to station f,. Of course, a real transmitter would send many
consecutive packets to the same set of addresses, in streams that comprise messages.
However, this modification is in keeping with the original model's actions, which randomly
assigned destinations on a packet-by-packet basis.

Preliminary tests indicated the model is not fully developed. Because no change
was made to the statistics generation mechanism in the sink process model, the new model
as written should have resulted in packets being counted toward total throughput each time
they were received at a destination, giving an inflated throughput computation. On the other
hand, this inflated figure could possibly be of value as a measure of "virtual throughput.* In
any event, tests indicate that throughput statistics are not being counted correctly. However,

a study of the model's behavior using the debug tool in conjunction with "printf" statements

107

samgh. §9 aas{0) ghsine

|
L]
1] [X] [X}] [X.]]
tas (ses)
Figure 35. Accumulating Synchronous Packets in MAC
Setal Wrvaghyet Ops) Galestn)
/ |
i : |
i .]
' : :
{ : !
[} . t
] ! 1
% 5
t [I H
P ; ;
*; |
o
L] | %
L) .A; .3 (X (8] .6 ar (N) .3]
tame (s00)

Figure 36. Asynchronous Throughput

108

indicated that no packets were being lost, and all stations seemed to carry out correctly the
operation of receiving a multicast packet, saving the information, and passing the packet on
to the next station.

Three tests are described here. The first is an attempt to reproduce the results
generated for one of the simulations used in Section A, then uses the same input parameters
to see if any differences exist in the handling of synchronous-only and asynchronous-only
traffic. The second test compares all synchronous throughput with all asynchronous
throughout. The third test is a verification that no packets are actually being lost. The fourth
test is an attempt to generate a plot of expected throughput when one station broadcasts all
its traffic.

The tests generally indicate that the multicast capable model, when limited to
single addressing, does not behave in the same manner as the single-address-only model. In
particular, throughput is lower than expected. Further development will be necessary to make
the multicasting model a reliable tool.

2. First Test
a Setup

Figure 37 displays the throughput plots resulting from the third run in the
set of simulations used to construct Figure 27. This test is based on the idea that if the
muiticast-capable model is limited to single addressing, and given the same input parameters
provided in the earlier test, then the resuiting throughput ought to be identical for total
asynchronous and synchronous traffic. Therefore, the following inputs were used for a 50
station, 50 km. LAN using the multicasting station model.

109

Ten stations (f0, f5, fl0, f15, f20, f25, f30, f35, f40, f45)
transmit only synchronous traffic in 512-bit packets with a constant arrival rate of 6000
packets/sec, resulting in a synchronous offered load of 30.72 Mbps. The remaining 40
stations transmit asynchronous traffic only, in 1000-bit packets at an arrival rate of 750
packets/sec, for an asynchronous offered load of 30 Mbps. TTRT is set to 10.7 ms. For all
stations, the Environment file attributes "min num addees” and "max num addees™ are
both set to 1, enforcing the limit of one desiination address per packet. Appendix H ws
the Environment file used here.

b. Results

Figure 38 illustrates the resulting throughput. Table 1 summarizes the
throughput results for the two simulations. The unpredictable throughput of the multicast-
capable model's synchronous and asynchronous modes would suggest some logic error in
coding. The reduction in overall throughput suggests perhaps some difficulty with the
simulation's timing mechanism.

Table 4. THROUGHPUT COMPARISON, FIRST TEST

Offered Load | Single Address Multicast

Capable Capable

Total 60.72 Mbps 60.60 Mbps 55.00 Mbps
Synchronous 30.72 Mbps 30.80 Mbps 43.00 Mbps
Asynchronous | 30.00 Mbps 30.00 Mbps 12.00 Mbps

A real FDDI station would not generate destination addresses in the manner

coded into the simulation model, the time required would be unreasonable. On the

110

o wash hoveghgnt (hps) (s3ev0?)
O sopae Mevegpes (us) Eieee?)
Q Wl bougiget Gus) (x30089)

i
§
: i
e - =

-

L o O 0 e T

£~ i i 1
hd T T T
H i i
H H H
' '
1 ! i
i : i
3
H ' s
i i !
i i
i i
t i i
! {
i]
! i
g * 4 - i g

N H
t :
H !
i i $
i i ;
t i i i

. i

. [X) 02 K] ae [}

e (sec)

Figure 38. Throughput: Multicast Capable Stations, Single Addressing Mode

111

other hand, although the simulation's execution is noticeably slowed by the extra events
generated in the destination address assignment loop, the throughput rate should not be
affected because the simulated passage of time is controlled by the Kernel Procedures. That
is, one microsecond does not pass until the simulation has completed one microsecond's
worth of events, at all points on the LAN. This is how simultaneous events around the LAN
are conducted, one at a time. For example, a new packet arrival at station f7, and a packet
destruction at station 23, and a token release at station fO may all occur simultaneously. A
study of the sequence of events, revealed through use of the debug facility, shows that the
simulation's clock is incremented after these events are all completed, thereby modeling
simultaneous events. The eight percent reduction in total throughput may indicate the
simulation timer is proceeding without waiting for the completion of the loop.
3. Second test
a Setup

This test was intended to compare the throughput resulting from two nearly
identical simulations, in which the first involved only synchronous traffic, and the second
involved only asynchronous traffic A ten-station LAN was created, with all stations having
the same packet arrival rate (750 packets/sec) and packet size (1000 bits). As in the previous
test, destination addresses were limited to one station per packet. TTRT was set to 4.0 ms.

b. Results

Figure 39 and Figure 40 illustrate the throughputs resulting from 7.5 Mbps
offered load of all-synchronous and all-asynchronous traffic, respectively. Interestingly, both
plots are identical, suggesting perhaps that the disparate results of the previous test indicate

112

spash dsvaghget 09s) (xier86)

’s
{
’ /WM i
.
!
‘ -+
t.5 4
s
.8
L]
s
‘s o) X3 2 in o N]
Une (se0)
i
Figure 39. Synchronous Throughput
e Daeagpnt (9t) (xaeees)
18
t
]
[
!
H
[J) U S
J \ H ™ B,
ss
" [
. ' ——
5 . .
H i H
! ! ' !
; i j |
s .
; ! ' : '
: i i i i i
; i ‘ i i i
.s ; ’ + : - "
h H § . H i
: i] :] .
g z : | ;
. i e i ; i ;
) i i i H H
: : : ; i i
+ i 1 ' i !
i i | f i i
i -+ . -+ -+ .
s i i : ! ‘
L
5 s | !
M X3 .5 %3 3 18 g 3.7 ?
tae (2e0)

Figure 40. Asynchronous Throughput

113

a coding error whenever mixed loads of synchronous and asynchronous traffic must be

tracked simultaneously. Also noteworthy is the fact that the resulting throughput in both
cases, 6.86 Mbps, was 91.5% of the offered load. This is comparable with the previous test:
the 55 Mbps throughput in Figure 38 represents 91.7% of the 60.72 Mbps offered load.

Again, this suggests a coordination problem between the addressing loop and the simulation's

tinekeeping function.
4. Third Test
a Setup

This test was intended to compare the throughput from two different
perspectives available. One result was generated in the familiar accounting procedure
conducted in the sink process model, and the other result used the Probe Editor to place a
monitoring probe on one of the station transmitter ncdes, phy_tx. If the transmissions are
arranged so that all traffic passes this node, then the result should be two identical
throughputs.

The same LAN of ten multicast-capable stations was used, with only station
9 transmitting, and with all of its traffic directed to station f8. In between, a probe was
placed on the transmitter node of station 7. The packet arrival rate was 7500 packets/sec.,
and the packet length was 1000 bits, giving an offered load of 7.5 Mbps, all of which was
asynchronous, with the full range of prioritization available. TTRT was 4.0 ms.

b. Results

Figure 41 shows a roughly constant difference of approximately 0.15 Mbps

between the throughput monitored from the physical transmitter and that calculated in the

114

——

receiving station's sink process. The irregular plots are unusual, since the simulations
normally show a smooth steady state after less than half a second. Significantly, both curves
remain close to the offered load, though they are jagged.

The 40 bits per packet overhead (created in the Parameter Editor, where
the fields “fc", "src_addr.” and "dest_addr" are assigned sizes of 8, 16 and 16 bits,
respectively) is a possible source of disparity, although a difference of 0.3 Mbps would be
expected in that case (7500 x 40). A study of the sink process model shows that overhead
is not included in throughput calculations, while the probes do count the bits in the
encapsulating packet structure. As before, the problem requires more study.

5. Fourth Test
a Setup

A final test of the expected throughput of the multicast-capable model
actually observed the multicasting facility, or more exactly, the broadcasting facility of the
model. Again, a ten station LAN was used, with only one station transmitting, with TTRT
set t0 4.0. This transmitter, station f7, generated 7500 packets at 1000 bits per packet, for
a total offered load of 7.5 Mbps, all asynchronous. In addition, each packet was addressed
to all nine of the other stations, which would be expected to yield a throughput of 67.5 Mbps.
(The throughput statistics are gathered by comparing timestamps at the receipt of a packet

with the packet's creation time, which is carried as a field in the fddi_11c_fr packet format).

115

b. Results
Figure 42 illustrates the actual result. The probe at station f7's "phy_tx"
node reflects the offered load of 7.5 Mbps with reasonable accuracy. However, the expected
throughput of 67.5 Mbps was not nearly realized. The throughput plotted, 48.9 Mbps,
represents 72.44% of the predicted amount. Again, this indicates a need to further develop
the model, and to better define the meanings of throughput and offered load when packets are

addressed to more than one station at a time.

116

(¢

@ vingt £7.php_w{0] DAL _uput (nieedé)
© WALl MINGPEt Ops) (B1e%88)

[X} 3.8
tine (mee)

Figure 41. Throughput from Two Vantage Points

o rngt. £7 phyg_wW(8) .24 _MSPR (RIeeIT)
© Wtal Nmagpet (o) (Rievd?)

s

+
’

i

8.3 .2 ..‘l (X .s
time (sec)

Figure 42. Broadcast from One Station

117

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This thesis has been directed to two main purposes: to explain the use and operation
of OPNET®s FDDI LAN simulation, and to describe the changes that were installed in the
model in order to make it a more useful, accurate and versatile tool for the Common Data
Link project. Both goals share another common objective, which is to develop and document
the "corporate knowledge” of the CDL working group which will continue to work with the
model studied here.

One immediate conclusion is the observation that OPNET is a powerful and flexible
tool, but it requires much time and study to be used effectively. Where desired model
attributes are lacking, the patient user may code his or her own. The following are the
accomplishments documented with this thesis:

1. Throughput, mean delay, and end-to-end delay data are recorded separately and
may be displayed separately for synchronous packet traffic and each priority level
of asynchronous packet traffic. In addition, two new scalar plot axes,
"Asynchronous Offered Load" and "Total Offered Load” are available for the
display of LAN performance data in relation to usage.

2. The FDDI station model is capable of randomly choosing different priority
threshold settings to assign to generated asynchronous packets, where before the

118

model was bound to one setting per simulation. This modification allows an
additional measure of flexibility in assigning the transmission characteristics of
an FDDI LAN.

A rudimentary linking node has been created, which accumulates recei\(ed traffic
in buffers for eventual transmission to another LAN.

A multicasting capability has been added to the FDDI station model, enabling
packets to be addressed to more than one destination station. Preliminary tests
and studies indicate the model correctly generates, transmits, receives, and
disposes of the multicast packets, although unexpected throughput data suggest
the model possibly has coding inaccuracies or improper interfacing of simulation
timing and destination address generation.

A modest series of preliminary tests verifies the continuing valid operation of the
modified models, for the most part.

A significant number of unexpected features of OPNET's FDDI LAN model are
documented, for the benefit of those researchers continuing to work on the CDL

proje:

B. RECOMMENDATIONS

Because the eventual goal of the work begun in this thesis is the development of a large

scale model simulation for a Network Interface, the development of the FDDI LAN model

may be expected to continue. The following are some possible areas for further development:

119

As mentioned, the multicasting feature yields unexpectedly low throughput. The
complex nature of the changes made to the code to enable multicasting suggests
the likelihood of some logic error or timing interface discrepancy. This ought to
be found and corrected.

The testing presented in this thesis is only preliminary, and could well be
expanded upon. Because of time constraints, delay characteristics were not
addressed at all.

The buffered subqueues of the preliminary bridging model are infinite by default,
but may be assigned limits through the use of on-screen attributes. The code
currently has no provision for the proper disposal of packets lost to buffer
overflows; lost frames will fill the host terminal's memory until none remains. A
related but separate issue is the fact that there is no retransmission protocol in

effect for the current model.

120

APPENDIX A. FILE RETRIEVAL VIA FTP

The following is an excerpt from a screen dislogue demonstrating access to MIL 3

Inc.'s bulletin board, movement among subdirectories, and retrieval of files.

sun24:/home3/nix

% ftp

ftp> open

(to) mil3.com

Connected to mil3.com.

220 rmaxwell FTP server (Sun0S 4.1) ready.
Name (mil3.com:nix): anonymous

331 Guest login ok, send ident as password.
Password: nix@ece.nps.navy.mil

230 Guest login ok, access restrictions apply.
ftp> dir

200 PORT command successful.

150 ASCII data connection for /bin/l1s (131.120.20.124,2926) (0 bytes).
total 18

rw-r--r-- 10 100 2110 Jul 21 00:32 FTP.instructions
r--r--r-- 10 1 5135 Jan 21 1992 README.OQPSIG
dr-xr-xr-x 20 1 512 Jan 14 1992 bin
dr-xr-xr-x 2 0 1 512 Jan 14 1992 dev
dr-xr-xr-x 2 0 1 512 Jan 14 1992 etc
drwxr-xr-x 5 0 1 512 Oct 27 1992 examp
drwx--x--x 2 0 1 512 Dec 20 16:40 incoming
dr-xr-xr-x 10 0 1 512 Dec 23 17:34 model_depot
drwxr-xr-x 10 0 1 512 Dec 15 10:09 patches
drwxrwxrwx 3 0 1 512 Dec 29 03:05 tmp
dr-xr-xr-x 30 1 512 Jan 14 1992 usr

226 ASCII Transfer complete.

700 bytes received in 3.1 seconds (0.22 Kbytes/s)

ftp> get README.OPSIG

200 PORT command successful.

150 ASCII data connection for README.OPSIG (131.120.20.124,2927) (5135
bytes).

226 ASCII Transfer complete.

local: README.OPSIG remote: README.OPSIG

5257 bytes received in 6.8 seconds (0.75 Kbytes/s)

ftp> cd patches

250 CWD command successful.

ftp> dir

200 PORT command successful.

150 ASCII data connection for /bin/1s (131.120.20.124,2928) (0 bytes).

total 8

121

drwxr-xr-x 6 101 1 512 Mar 10 1993
drwxr-xr-x 4 101 100 512 Apr 2 1993
drwxr-xr-x 6 101 1 512 Sep 24 22:42
drwxr-xr-x 4 101 1 5§12 Dec 6 18:37
drwxr-xr-x 5 101 1 512 Dec 17 22:32
drwxr-xr-x 4 101 1 512 Jan 29 1993
drwxr-xr-x 13 101 1 512 Apr 26 1993
drwxr-xr-x 5 101 1 512 Jun 10 1993

226 ASCII Transfer complete.

511 bytes received in 0.63 seconds (0.8 Kbytes/s)
250 CWD command successful.

ftp> cd 2.4.B

250 CWD command successful.

ftp> dir

200 PORT command successful.

150 ASCII data connection for /bin/ls (131.120.20.

total 3

drwxr-xr-x 2 101 100 512 Dec 15 10:11
drwxr-xr-x 2 0 1 512 Dec 17 22:
drwxr-xr-x 2 0 1 512 Dec 17 20:

226 ASCII Transfer complete.

205 bytes received in 0.28 seconds (0.7 Kbytes/s)
ftp> cd opbug_2081

250 CWD command successful.

ftp> dir

200 PORT command successful.

150 ASCII data connection for /bin/ls (131.120.20.

total 57
-rw-r--r-- 1 101 100 3988 Dec 15 07:12
-rw-r--r-- 1101 100 53379 Dec 15 07:1

226 ASCII Transfer complete.

141 bytes received in 0.22 seconds (0.62 Kbytes/s)

ftp> get README

200 PORT command successful.

150 ASCII data connection for README (131.120.20.1
bytes).

226 ASCII Transfer complete.

local: README remote: README

4092 bytes received in 5 seconds (0.81 Kbytes/s)

ftp> bin

200 Type set to I.

ftp> get fddi_mac.pr.m

200 PORT command successful.

Xr-r
=4
©

:betaz
.beta3
.betad

NN N
S HLbLbbhWwWwW
»

124,2934) (0 bytes).
opbug_2081

33 tsup_3139
15 tsup_3182

124,2935) (0 bytes).

README
2 fddi_mac.pr.m

24,2936) (3988

150 ASCII data connection for fddi_mac.pr.m (131.120.20.124,2937)

*(53379 bytes).
226 ASCII Transfer complete.
local: fddi_mac.pr.m remote: fddi_mac.pr.m
53388 bytes received in 64 seconds (0.81 Kbytes/s)
ftp> quit

122

A.

APPENDIX B. PACKET AND ICI FRAME

STRUCTURES

The following packet structures are used in the FDDI LAN model.

PACKET FORMATS

"fddi_lic_fr"

Field Name Type Size (bits) Default Value Default Set
cr_time double 0 0.0 set
pritete integer 0 0 unset

Note: Added to allow generation of statistics related to prioritized traffic

"fddi_mac_fr"

Field Name
fc
src_addr
dest_addr
info
svc_class
pri
tk_class

"fddi_mac_tk"

Field Name

fc

class
res_station

Type Size (bits) Default Value Default Set
integer 8 - unset
integer 16 - unset
integer 16 - unset
packet -1 - unset
integer 0 - unset
integer 0 - unset
integer 0 - unset
Type Size (bits) Default Value Default Set
integer 8 - unset
integer 0 - unset
integer 0 - unset

123

B. ICI FORMATS

1. "fddi_mac_ind"

Attribute Name Type Default
src_addr integer 0
dest_addr integer 0

2. "fddi_mac_req"

Attribute Name Type Default
svc_class integer 0
dest_addr integer 0
pri integer 0
tk_class integer 0

124

APPENDIX C. EXAMPLE ENVIRONMENT FILE

FOR 32-STATION FDDI LAN

fddi32.ef
sample simulation configuration file for fddi example model

32 station network

fix** Attributes related to loading used by "fddi_gen" #**=*

station addresses

.f0.mac.station_address:
.fl.mac.station_address:
.f2.mac.station_address:
.f3.mac.station_address:
.f4.mac.station_address:
.f5.mac.station_address:
.f6.mac.station_address:
.f7.mac.station_address:
.f8.mac.station_address:
.f9.mac.station_address:
.fl0.mac.station_adaress: 10
.fll.mac.station_address: 11
.fl2.mac.station_address: 12
.fl3.mac.station_address: 13
.fl4.mac.station_address: 14
.fl5.mac.station_agdress: 15
.fl6.mac.station_adaress: 16
.f17 .mac.station_aadress: 17
.fl8.mac.station_address: 18
.fl9.mac.station_address: 19
.f20.mac.station_address: 20
.f2l.mac.station_address: 21
.f22.mac.station_address: 22
.f23.mac.station_address: 23
.f24.mac.station_address: 24
.f25.mac.station_address: 25
.f26.mac.station_address: 26
.f27 .mac.station_address: 27
.f28.mac.station_address: 28
.f29.mac.station_address: 29
.f30.mac.station_address: 30
.f3l.mac.station_address: 31

WONVO U B WMN—O

* F % o X % X F X F A A A % % % X F % A % % F H X F X % * X % %
* % & o O o A F A X % A F A A X * * % % A A * A * % * * * X *

125

* * * mac.ring_1d :0

destination addresses for random message generation
** * 11c_src.low dest address” : 0
** * Jlc_src.high dest address® : 31

#"top.ring0.f0.11c_src.low dest address”
#"top.ring0.f0.11c_src.high dest address” :

arrival rate(frames/sec), and message size (bits) for random message
f# generation at each station on the ring.

"k % * arrival rate" : 200

"% * * mean pk length® : 500

set the proportion of asynchronous traffic
a value of 1.0 indicates all asynchronous traffic
tk * * async_mix" : 1.0

fi*** Ring configuration attributes used by "fddi_mac*® ***

allocate percentage of synchronous bandwidth to each station
this value should not exceed 1 for all stations combined: OPNET does

not
enforce this; O1FEB94: this must be less than l: see equation below

"*x * mac.sync bandwidth® : 6.0
"* f0.mac.sync bandwidth® : .0935487

"+ * mac.T_Req" : .010

Index of the station which initially launches the token
"spawn station®": O

Delay incurred by packets as they traverse a station’s ring interface
see Powers, p. 351 for a discussion of this (Powers gives lusec,

but 60.0e-08 agrees with Dykeman & Bux)

station_latency: 60.0e-08

Propagation Delay separating stations on the ring.
prop_delay: 5.085e-06

fi*** Simulation related attributes

Token Acceleration Mechanism enabling flag.

It is reccomended that this mechanism be enabled for most situations
accelerate_token: 1

seed: 10

Run control attributes

duration: 5

126

verbose_sim: TRUE

upd_int: .1

os_file: fddi32mod

ov_file: fddi32mod

Opnet Debugger (odb) enabling attribute
i debug: TRUE

127

APPENDIX D. DEBUG TOOL EXCERPT

The following is an excerpt from the debugger in fulltrace, showing the arrival and
reception of a message traffic packet at its destination address. In this case, station f11
has sent a packet to station f31. The packet has been passed "hand to hand” through each
station in between, with the simulator enacting every step along the way. Note that when

reception is complete, the simulation returns to station f11, which still has the token.

(ODB 2.4.A: Event)

* Time ¢ 0.995744186808 sec, [00d 00h OOm 00s . 995ms 744us
186ns 808ps]
* Event : execution ID (461704), schedule ID (#502933), type

(self intrpt)
* Source : execution ID (461703), top.ring0.f30.phy_tx (pt-pt

transmitter)
* Data : code (0)
> Module : top.ring0.f30.phy_tx (pt-pt transmitter)
odb> next

* Kernel Action: Pt-Pt Transmitter object
Completing transmission of packet(s)
channel (0)
packet ID (4459)

(ODB 2.4.A: Event)

* Time : 0.995744186808 sec, [00d 00Oh OOm 00s . 995ms 744us
186ns 808ps]
* Event : execution ID (461705), schedule ID (#502934), type

(remote intrpt)

* Source : execution ID (461703), top.ring0.f30.phy_tx (pt-pt
transmitter)

* Data : code (0)

> Module : top.ring0.f3l.phy_rx (pt-pt receiver)

odb> next
* Kernel Action: Pt-Pt Receiver object

Beginning reception of packet
channel 0)

128

o

packet ID (4459)

(ODB 2.4.A: Event)

* Time : 0.995744186808 sec, [00d 00h 00Om 00s . 995ms 744us 186ns
808ps]

* Event : execution ID (461706), schedule ID (#502935), type
(remote intrpt)

* Source : execution ID (461703), top.ring0.f30.phy_tx (pt-pt
transmitter)

* Data : code (0)

> Module : top.ring0.f3l.phy_rx (pt-pt receiver)

odb> next

* Kernel Action: Pt-Pt Receiver object
Completing reception of packet
channel (0)
packet ID (4459)

* Kernel Action: Pt-Pt pipeline
Calling (error) pipeline stage
packet ID (4459)

* op_td_get_int (pkptr, tda_index)
packet ID (4459)
TDA attribute (OPC_TOA_PT_LINK_0BJID)
TDA value (82)

* op_ima_obj_attr_get (objid, attr_name, value_ptr)
objid (82)
attr_name (ber)
value (0.0)

* op_pk_total_size_get (pkptr)
packet ID (4459)
total size (25040)

* op_td_set_int (pkptr, tda_index, value)
packet ID (4459)
TDA attribute (OPC_TDA_PT_NUM_ERRORS)
TDA value (0 bit errs)

* Kernel Action: Pt-Pt pipeline
Calling (ecc) pipeline stage
packet ID (4459)

* op_td_1is_set (pkptr, tda_index)

packet ID (4459)
TDA attribute (OPC_TDA_PT_ND_FAIL)

129

m

tda is set (false)

* op_td_get_int (pkptr, tda_index)
packet ID (4459)
TDA attribute (OPC_TDA_PT_RX_0BJID)
TDA value (734)

* op_ima_obj_attr_get (objid, attr_name, value_ptr)
objid (734)
attr_name (ecc threshold)
value (0.0)

* op_pk_total_size_get (pkptr)
packet ID (4459)
total size (25040)

* op_td_get_int (pkptr, tda_index)
packet ID (4459)
TDA attribute (OPC_TDA_PT_NUM_ERRORS)
TDA value (0 bit errs)

* op_td_set_int (pkptr, tda_index, value)
packet ID (4459)
TDA attribute (OPC_TDA_PT_PK_ACCEPT)

TDA value (1)

* Kernel Action: Pt-Pt Receiver object
Packet successfully received
channel (0)
packet ID (4459)

(0DB 2.4.A: Event)

* Time : 0.995744186808 sec, [00d OOh OOm 00s . 995ms 744us 186ns
808ps]

* Event : execution ID (461707), schedule ID (#502936), type
(stream intrpt)

* Source : execution ID (461706), top.ring0.f3l.phy_rx (pt-pt
receiver)

* Data : instrm (0), packet ID (4459)

> Module : top.ring0.f3l.mac (queue)

odb> next

* invoking process ("fddi_mac")

state (IDLE): exit executives

* op_intrpt_type ()
intrpt type (stream intrpt)

130

* op_intrpt_strm ()
active strm (0)

* op_pk_get (instrm_index)
strm. index (0)
packet ID (4459)

* op_pk_nfd_get (pkptr, fd_name, value_ptr)
packet ID (4459)
field name (fc)
value (0)

* op_intrpt_type ()
intrpt type (stream intrpt)

* op_intrpt_type ()
intrpt type (stream intrpt)

* op_intrpt_strm ()
active strm (0)

state (FR_RCV): enter executives
* op_pk_nfd_get (pkptr, fd_name, value_ptr)
packet ID (4459)
field name (src_addr)
value (11)
state (FR_RCV): exit executives

state (FR_REPEAT): enter executives

* op_pk_nfd_get (pkptr, fd_name, value_ptr)
packet ID (4459)
field name (dest_addr)
value (31)

* op_pk_total_size_get (pkptr)
packet ID (4459)
total size (25040)

* op_pk_nfd_get (pkptr, fd_name, value_ptr)
packet ID (4459)
field name (info)
value (pk id (4458))

* op_ici_attr_set (iciptr, attr_name, attr_value)
ICI id (81)
attr name (src_addr)
value (11)

131

*

op_ici_attr_set (iciptr, attr_name. attr_value)

ICI id (81)
attr name (dest_addr)
value (31)

»

op_ici_install (iciptr)
ICI ID (81)

»*

op_pk_send_delayed (pkptr, outstrm_index, delay)
packet ID (4458)

stream index (1)

delay (0.0002504)

* op_pk_destroy (pkptr)
packet ID (4459)

%

Kernel Action: Destroying Packet
packet ID (4459)

state (FR_REPEAT): exit executives

state (IDLE): enter executives
* returning from process ("fddi_mac")

(0ODB 2.4.A: Event)

* Time : 0.995886571808 sec., [00d 00h QOm 00s . 995ms 886us 571ns
808ps]

* Event : execution ID (461708), schedule ID (#502837), type
(stream intrpt)

* Source : execution ID (461607), top.ring0.fll.mac (queue)

* Data : instrm (0), packet ID (4457)

> Module : top.ring0.fll.phy_tx (pt-pt transmitter)

odb> next

132

N —

DU oW

10
1
12
13
14
15
16
17
18

19
20

2

23
24

25
26

27
28

APPENDIX E. MAC "C" CODE:

"fddi_mac_mult.pr.c"

The line numbering in this appendix is used for reference within this thesis only, and

does not correspond with that seen in OPNET®'s text editors.

/* Process model C form file: fddi_mac_mult.pr.c */
/* Portions of this file Copyright (C) MIL 3, Inc. 1992 */

/* OPNET system definitions */
f#finclude <opnet.h>

ffinciude "fddi_mac_mult.pr.h"
FSM_EXT_DECS

/* Header block */
/* Define a timer structure used to implement */
/* the TRT and THT timers. The primitives defined to */
/* operate on these timers can be found in the */
/* function block of this process model. */
typedef struct
{

int enabled;

double start_time:
double accum;

double target_accum;

} FAdiT_Timer;

/* OBFEB94: define the number of stations here. -Nix */
ffdefine NUM_STATIONS 50

/* Declare certain primitives dealing with timer.s */

double fddi_timer_remaining ();
FddiT_Timer* fddi_timer_create ();
double fddi_timer_value ();

/* Scratch strings for trace statements */
char str0 [512], strl [512];:

/* define constants particular to this implementation */
fidefine FDDI_MAX_STATIONS 512

133

888 4Ly R 2y

S5&k &h=2

g &8&8%

82

L SKREY

8

KRB B 28

/* define possible values for the frame control field */

#define FDDI_FC_FRAME 0
#define FDDI_FC_TOKEN 1
/* define possible service classes for frames */
fidefine FDDI_SVC_ASYNC 0
##define FDDI_SVC_SYNC 1
/* define input stream indices */
#define FDDI_LLC_STRM_IN 1
fidefine FDOI_PHY_STRM_IN 0
/* define output stream indices */
fidefine FDDI_LLC_STRM_OUT 1
#tdefine FDDI_PHY_STRM_OUT 0

/* define token classes */
{#fdefine FDDI_TK_NONRESTRICTED 0

fidefine FODI_TK_RESTRICTED 1

/* Ring Constants */

fidefine FDDI_TX_RATE. 1.0e+08
fidefine FODI_SA_SCAN_TIME 28.0e-08

/* Token transmission time: based on 6 symbols plus 16 symbols of
preambie */

ftdefine FDDIC_TOKEN_TX_TIME 88.0e-08

/* Codes used to differentiate remote interrupts */
ftdefine FDDIC_TRT_EXPIRE 0

fidefine FDDIC_TK_INJECT 1

/* Define symbolic expressions used on transition */

/* conditions and in executive statements. */

f#idefine TRT_EXPIRE (op_intrpt_type () == OPC_INTRPT_REMOTE &&
op_intrpt_code () == FODIC_TRT_EXPIRE)

ffdefine TK_RECEIVED phy_arrival && frame_control == FDDI_FC_TOKEN

ffdefine RC_FRAME phy_arrival && frame_control == FDDI_FC_FRAME

f##define FRAME_ARRIVAL \
op_intrpt_type () == QPC_INTRPT_STRM && \
op_intrpt_strm () == FDODI_LLC_STRM_IN

ffdefine STRIP my_address == src_addr

{* Define the maximum value for ring_id. This is the */

/* maximum number of FDDI rings that can exist in a */
/* simulation. Note that if this number is changed, */

134

AdRISB 2T

dad3s R

TEER B2

B8R £88 1288

e41

28

k.

8

/* the initialization for fddi_claim_start below must */
/* also be modified accordingly. */
#define FODI_MAX_RING_ID 8

/* Declare the operative TTRT value 'T_Opr’ which is the final */

/* negotiated value of TTRT. This value is shared by all stations */
/* on a ring so that all agree on its value. */

double fddi_t_opr [FODI_MAX_RING_ID]:

fidefine Fddi_T_Opr (fddi_t_opr [ring_1id])

/* This flag indicates that the negotiation for the final TTRT */

/* has not yet begun. It is statically initialized here, and */

/* is reset by the first station which modifies T_Opr. */

/* Initialize to 1 for all rings. */

int fddi_claim_start [FODI_MAX_RING_ID] = (1,1.1.1.1.,1.1.1};
f#idefine Fddi_Claim_Start (fddi_clatim_start [ring_id])

/* Declare station latency parameters. */

/* These are true globals. so they do not need to be arrays. */
double Fddi_St_Latency:

double Fddi_Prop_Delay:

/* Declare globals for Token Acceleration Mechanism. */
/* Hop delay and token acceleration are true globals. */
double Fddi_Tk_Hop_Delay:

int Fddi_Tk_Accelerate = 1;

/* These are actually values shared by all nodes on a ring, */

/* so they must be defined as arrays. */

double fddi_tk_block_base_time [FDDI_MAX_RING_ID]:

fidefine Fddi_Tk_Block_Base_Time (fddi_tk_block_base_time [ring_id])

int 31_tk_block_base_station [FDDI_MAX_RING_ID]:
{#idefine Fddi_Tk_Block_Base_Station (fddi_tk_block_base_station
[ring_id])

int fddi_tk_blocked [FDDI_MAX_RING_ID]:
f#idefine Fddi_Tk_Blocked (fddi_tk_blocked [ring_id])

int fddi_num_stations [FDDI_MAX_RING_ID]:
fidefine Fddi_Num_Stations (fddi_num_stations [ring_id])

int fddi_num_registered [FDDI_MAX_RING_ID]:
ffdefine Fddi_Num_Registered (fddi_num_registered [ring_id])

Objid fddi_address_table [FDDI_MAX_RING_IDJ[FDDI_MAX_STATIONS];
f#idefine Fddi_Address_Table (fddi_address_table [ring_id])

/* Below is part of the OPBUG 2081 patch: FB ended here, before. -Nix */

135

124

125
126
127
128
129
130

131
132
13
134
135
136
137
138
139
140
141
142
143
14
145
146
147
148

/* Event handles for the TRT are maintained at a giobal level to */
/* allow token acceleration mechanism to adjust these as necessary */
/* when blocking and reinjecting the token. TRT_handle simply */

/* represents the TRT for the local MAC */

Evhandle fddi_trt_handle [FODI_MAX_RING_ID]J[FDDI_MAX_STATIONS]:
#define Fddi_Trt_Handle (fddi_trt_handle [ring_id])

#define TRT_handle Fddi_Trt_Handle [my_address]

/* Similarly, the TRT data structure is maintained on a global Tevel. */
FAddiT_Timer* fddi_trt [FODI_MAX_RING_ID] [FODI_MAX_STATIONS]:

#define Fddi_Trt (fddi_trt [ring_id])

#define TRY Fddi_Trt [my_address]

/* Registers to record the expiration time of each TRT when token is

blocked. */
double fddi_trt_exp_time [FOOI_MAX_RING_ID] [FDDI_MAX_STATIONS]:

#idefine Fddi_Trt_Exp_Time (fddi_trt_exp_time (ring_1id])

/* the ‘Late_Ct' flag is declared on a global level so that it can be
*/
/* set at the tim ewhere the token is injected back into the ring. =/

int fddi_late_ct (FODI_MAX_RING_ID] [FODI_MAX_STATIONS]:
fidefine Fddi_Late_Ct (fddi_late_ct [ring_id])
fidefine Late_Ct Fddi_Late_Ct [my_address]

/* Convenient macro for setting TRT for a given station and absolute
time. */

fidefine TRT_SET(station_id,abs_time) fddi_timer_set (Fddi_Trt
[station_1d], abs_time - op_sim_time()); Fddi_Trt_Handle [station_id]
= op_intrpt_schedule_remote (abs_time, FODIC_TRT_EXPIRE,
Fddi_Address_Table (station_id]);

/* State variable definftions */
typedef struct

{

FSM_SYS_STATE

int sv_ring_id;
FAddiT_Timer* sv_THT;

double sv_T_Req:

double sv_T_Pri [8];
Objid sv_my_objid;

int sv_spawn_token;
int sv_my_address;
Packet* sv_ti_pkptr;

double sv_sync_bandwidth;
double sv_sync_pc;:

int sv_restricted;
int sv_res_peer;

int sv_tk_registered:
Ici* sv_to_1lc_ici_ptr;

136

149 int sv_tk_trace_on;

150) fddi_mac_mult_state:;

151 #define pr_state_ptr ((fddi_mac_mult_state*) SimI_Mod_State_Ptr)
152 #define ring_1id pr_state_ptr->sv_ring_id

153 #define THT pr_state_ptr->sv_THT

154 #define T_Req pr_state_ptr->sv_T_Req

15 #define T_Pri pr_state_ptr->sv_T_Pri

156 {#define my_objid pr_state_ptr->sv_my_objid

157 {idefine spawn_token pr_state_ptr->sv_spawn_token
158 {fldefine my_address pr_state_ptr->sv_my_address
159 {idefine tk_pkptr pr_state_ptr->sv_tk_pkptr

160 {define sync_bandwidth pr_state_ptr->sv_sync_bandwidth
161 {idefine sync_pc pr_state_ptr->sv_sync_pc

162 {fidefine restricted pr_state_ptr->sv_restricted
163 jidefine res_peer pr_state_ptr->sv_res_peer

164 fidefine tk_registered pr_state_ptr->sv_tk_registered
165 {#define to_llc_ici_ptr pr_state_ptr->sv_to_1lc_ici_ptr
166 {idefine tk_trace_on pr_state_ptr->sv_tk_trace_on

167 /* Process model interrupt handling procedure */

168 void

169 fddi_mac_mult ()

170 {

i /* Packets and ICI's */

1mn Packet* mac_frame_ptr;

173 Packet* pdu_ptr;

174 Packet* pkptr:

175 Packet™* data_pkptr;

176 Ici* ici_ptr;

1n /* Packet Fields and Attributes */

178 int req_pri, svc_class, req_tk_class;
179 int frame_control, src_addr;

180 int pk_len, pri_level;

181 static

182 int *da_ptr, dest_addr(];

183 /* Token - Related */

184 int tk_usable, res_station, tk_class;
185 int current_tk_class;

186 double accum_sync;

187 /* Timer - Related */

188 double tx_time, timer_remaining, accum_bandwidth;
189 double tht_value;

190 /* Miscellaneous */

191 int i;

137

232

/*

/*

/*

[*
/*
/'k
/*
/*

/*
/*
/*
/*

/*

/*

] *
/*

int spawn_station, phy_arrival;

char error_string [512]:

int num_frames_sent, num_bits_sent;
26DEC93: loop management variables, used in RCV_TK */
/* and ENCAP states. -Nix */

int NUM_PRIOS;

int punt;

int q_check;

OBFEB94: case management variables, used in FR_REPEAT. -Nix */
int for_me:
int count_addees;

08MAR94: "field holding" variables, used in FR_REPEAT. -Nix */
Packet* info_ptr;

FSM_ENTER (fddi_mac_mult)

FSM_BLOCK_SWITCH

/** state (INIT) enter executives **/
FSM_STATE_ENTER_FORCED (0, state0_enter_exec, "INIT")
{
Obtain the station’'s address . This is an attribute */
of this process. Addressing is simpiified by */
simply using integers, and only one mode. */
This mode is 16 bit addressing unless the */
packet format ‘fddi_mac_fr’® is modified. */
my_objid = op_id_self(); /* 29DEC93 */
op_ima_obj_attr_get (my_objid, “"station_address", &my_address);

Registier the station's object id in a global table. */
This table is used by the mechanism which improves */
simulation efficiency by 'jumping over’' idle periods */
rather than circulating an unusable token. */
fddi_station_register (my_address, my_objid);

Obtain the station latency for tokens and frames. */
Default value is set at 100 nanoseconds. */
Fddi_St_Latency = 100.0e-09;
op_ima_sim_attr_get (OPC_IMA_DOUBLE, “station_latency",
&Fddi_St_Latency);

Obtain the propagation delay separating stations. */
This value is given in seconds with default value 3.3 microseconds.
*/

Fddi_Prop_Delay = 3.3e-06;

138

op_ima_sim_attr_get (OPC_IMA_DOUBLE, "prop_delay",
&Fddi_Prop_Delay):

/* Derive the Delay for a 'hop’ of a freely circulating packet. */
Fddi_Tk_Hop_Dulay = Fddi_Prop_Delay + Fddi_St_Latency;

237 /* The T_Pri [] state variable array supports priority */

238 /* assignments on a station by station basis by */

239 /* establishing a correspondence between integer priority */

240 /* levels assigned to frames and the maximum values of the*/

241 /* Token holding timer (THT) which would allow packets to be*/

242 /* sent. Eight levels are supported here, but this can easily */

243 /* be changed by redimensioning the priority array. */

244 /* By default all levels are identical here, allowing */

245 /* any frame to make use of the token, so that in fact */

246 /* priority levels are not used in the default case. */

247 /* 01JAN94: (8-i) is a quick attempt to impart different weighting */
248 /* scales on each priority level, and is not necessarily realistic.-Nix
249 */

250 for (i = 0; i < B; i++)

251 {

252 T_Prifi] = (double) Fddi_T_Opr/(8.0 - i): /* 01JAN94 */
253 /* printf("INIT: T_Pri[%d] = %d; Fddi_T_Opr = %d\n", */

254 /* i, T_Pri(i], Fddi_T_Opr); */

255)

256 /*Create the token holding timer (THT) used to restrict the */
257 /* asynchronous bandwidth consumption of the station */
258 THT = fddi_timer_create ();

259 /* Create the token rotation timer (TRT) used to measure the */
260 /* rotations of the token, detect late tokens and initialize */
261 /* the THT timer before asynchronous tranmsmissions. */

262 TRT = fddi_timer_create ();

263 /* Set the TRT timer to expire in one TTRT */
264 TRT_SET (my_address., op_sim_time () + Fddi_T_Opr):

265 /* Initialize the Late_Ct variable which keeps track. */
266 /* of the number of TRT expirations. */

267 Late_Ct = 0;

268 /* initially the ring operates in nonrestricted mode */
269 restricted = 0;

2710 /* Create an Interface Control Information structure */
2n /* to use when delivering received frames to the LLC. */

139

212

273
274
275

88 B8 BERVY HIUBEE

SERER

g8

/*
/*

/>
/*
/*
/*
/*

,*
/*
/*

/*
] *
/*

/t
/*

/*

/*

/*
/*
/'k
/*

[*
/*

to_llc_ici_ptr = op_ici_create ("fddi_mac_ind");

The 'tk_registered’ variable indicates if the station */
has registered its intent to use the token. */
tk_registered = 0;

Determine if the model is to make use of the token */
*acceleration' mechanism. If not, every passing of the */
token will be explicityly modeled, leading to large */
number of events being scheduled when the ring is idle */
(i.e, no stations have data to send). */
op_ima_sim_attr_get (OPC_IMA_INTEGER, "accelerate_token",
&Fddi_Tk_Accelerate);

Obtain the synchronous bandwidth assigned */

to this station. It 1s expressed as a */

percentage of TTRT, and then converted to seconds */
op_ima_obj_attr_get (my_objid, "sync bandwidth", &sync_pc);
sync_bandwidth = sync_pc * Fddi_T_Opr:

Only one station in the ring is selected to */
introduce the first token. Test if this station s it. */
If so, set the ‘spawn_token’ flag. */
op_ima_sim_attr_get (OPC_IMA_INTEGER, °"spawn station”,
&spawn_station);
spawn_token = (spawn_station == my_address);

If the station is to spawn the token, create */
the packet which represents the token. */
if (spawn_token)
{
tk_pkptr = op_pk_create_fmt ("fddi_mac_tk");

assign its frame control field */
op_pk_nfd_set (tk_pkptr, "fc", FODI_FC_TOKEN);

the first token issued is non-restricted */
op_pk_nfd_set (tk_pkptr, "class”, FDDI_TK_NONRESTRICTED);

The transition will be made into the ISSU_TK */
state where the tk_usable variable is used. */
In case any data has been generated, prset */
this variable to one. */

tk_usable = 1;

When sending packets the variable accum_bandwidth {is */
used as a scheduling base. Init this value to zero. */

140

310 /* This statement is required in case this is the spawning */
311 /* station, and the next state entered is ISSUE_TK */

312 accum_bandwidth = 0.0;

313 }

314 /** state (INIT) exit executives **/

315 FSM_STATE_EXIT_FORCED (0, stateO_exit_exec, "INIT")
316 {

317)

318 /** state (INIT) transition processing **/

319 FSM_INIT_COND (spawn_token)

320 FSM_DFLT_COND

kil FSM_TEST_LOGIC ("INIT™)

32 FSM_TRANSIT _SWITCH

323 {

324 FSM_CASE_TRANSIT (0, 2, state2_enter_exec, ;)

325 FSM_CASE_TRANSIT (1, 1, statel_enter_exec, ;)

326 }

327 J A R e R */
328 /** state (IDLE) enter executives **/

329 FSM_STATE_ENTER_UNFORCED (1, statel_enter_exec, "IDLE")
330 {

k)|)

332 /** blocking after enter executives of unforced state. **/
333 FSM_EXIT (3,fddi_mac_mult)

334 /** state (IDLE) exit executives **/

335 FSM_STATE_EXIT_UNFORCED (1. statel_exit_exec, "IDLE")
336 {

337 /* Determine if a trace is activated for the FDDI model */
338 tk_trace_on = op_prg_odb_ltrace_active ("fddi_tk");

339 /* Trap packets arriving from physical layer so that their */
340 /* FC field can be extracted before evaluating cornditions */

41 if (op_intrpt_type () == OPC_INTRPT_STRM && op_intrpt_strm ()
342 != FDDI_LLC_STRM_IN)

343 {

344 /* Acquire the arriving packet. */

345 pkptr = op_pk_get (FDDI_PHY_STRM_IN);

346 /* Determine the type of packet by extracting */
347 /* the frame control field. */
348 op_pk_nfd_get (pkptr, "fc", &frame_control):

349 /* Physical layer arrival flag is set. */
350 phy_arrival = 1;

141

367
368

369
370
n
372
KIK!

374
375
376
3n
378
379
380

381
382
383
384
385
386
387
388
389

390
ki)
392
393

/*

/*

/*

/*

/'k

/*

/*

/*

}
else{
The interrupt is not due to a physical layer arrival. =/
phy_arrival = Q;

If the interrupt is a remote interrupt with specified code, it
signifies */

the reinsertion of the token into the ring after an idle period. This
only */
occurs if the token acceleration mechanism is active. */

if (op_intrpt_type () == OPC_INTRPT_REMOTE && op_intrpt_code
() == FDDIC_TK_INJECT)

{
create a new token */
tk_pkptr = op_pk_create_fmt (°"fddi_mac_tk");

assign its frame control field */
op_pk._nfd_set (tk_pkptr, "fc", FODI_FC_TOKEN);

the token is non-restricted */
op_pk_nfd_set (tk_pkptr, "class", FDDI_TK_NONRESTRICTED):

insert it into the ring */
op_pk_send (tk_pkptr, FDDI_PHY_STRM_OUT);
}

)

/** state (IDLE) transition procecsing **/

FSM_INIT_COND (TK_RECEIVED)
FSM_TEST_COND (RC_FRAME)
FSM_TEST_COND (TRT_EXPIRE)
FSM_TEST_COND (FRAME_ARRIVAL)
FSM_DFLT_COND

FSM_TEST_LOGIC ("IDLE")

FSM_TRANSIT_SWITCH
{
FSM_CASE_TRANSIT (0, 3, state3_enter_exec, ;)
FSM_CASE_TRANSIT (1, 4, stated4_enter_exec, :)
FSM_CASE_TRANSIT (2, 7, state7_enter_exec, :)
FSM_CASE_TRANSIT (3, 8, state8_enter_exec, :)
FSM_CASE_TRANSIT (4, 1, statel_enter_exec, :)

/** state (ISSUE_TK) enter executives **/

/*

FSM_STATE_ENTER_FORCED (2, state2_enter_exec, "ISSUE_TK")

{
If the token is sent without having been used, and the station */

142

/*
/*
/*

/'k
/*

/*
/*
/*
/*
/*
/*

has no data to send, then indicate this fact to the */
token acceleration mechanism which may have an */
oppurtunity to block the token. */
if (!tk_usable && op_q_stat (OPC_QSTAT_PKSIZE) == 0.0)
{
Note that if the token cannot be blocked, */
this procedure will forward the token physically. */
fddi_tk_indicate_no_data (tk_pkptr, my_address,
accum_bandwidth);
}
elsef
if (tk_trace_on == OPC_TRUE)
{
sprintf (str0, "Issuing token. accum_bw (%.9f), prop_del
(%.9f)", accum_bandwidth, Fddi_Prop_Delay):
op_prg_odb_print_major (str0, OPC_NIL);
}

Send out the token packet using the accumulated */
consumed bandwidth as a scheduling base. */
In the case of the initial spawning of the token */
this will be zero; otherwise this variable will */
reflect the bandwidth consumed since the last capture */
of the usable token. Propagation delay is also accounted for. */
op_pk_send_delayed (tk_pkptr, FODI_PHY_STRM_OUT,
accum_bandwidth + Fddi_Prop_Delay);
}
}

/** state (ISSUE_TK) exit executives **/

FSM_STATE_EXIT_FORCED (2, state2_exit_exec, "ISSUE_TK")
{
}

,** state (ISSUE_TK) transition processing **/

FSM_TRANSIT_FORCE (1, statel_enter_exec, ;)

/** state (RCV_TK) enter executives **/

/*
/*
/*

/*

/*

FSM_STATE_ENTER_FORCED (3, state3_enter_exec, "RCV_TK")
{
The arriving packet, when received in the IDLE state */
is placed in the variable 'pkptr’. Since it is now */
known that it is a token, it can be placed in ’tk_pkptr. */
tk_pkptr = pkptr;

Load the token's class into the temporary variable "tk_class.’' */
op_pk_nfd_get (pkptr, "class”, &tk_class):

If the token is restricted, determine for which station. */

143

/*
/*

/*
/*
/*

/*
/*
/*
/*
/*

/*
/*
/*

/*
/*

/*
/*

/*

/*
/*

/*
/*
/*
/*
/*

T

if (tk_class == FODI_TK_RESTRICTED)
{
Place the station address in the variable °'res_station® */
which may factor in to the determination of token usability. */
op_pk_nfd_get (tk_pkptr, "res_station", &res_station);

Determine if the token is usable: */
assume by default that it is not */
Subsequent conditions may override this. */
tk_usable = 0;
The token can only be usable if there are frames enqueued */
27DEC93: the entire bank of subqueues must be checked, */
starting at the highest priority (corresponding to */
synchronous traffic), and stopping when a packet is */
found. Then the loop is broken. -Nix */
NUM_PRIOS = 9;
for (i = NUM_PRIOS - 1: % > -1; i--)
{
if (op_subq_stat (i, OPC_QSTAT_PKSIZE) > 0.0)
{
examine the attributes of the packet at the */
head of the queue. */
fddi_load_frame_attrs (&dest_addr, &svc_class, &pri_level); */
fddi_load_frame_attrs (dest_addr, &svc_class, &pri_level);

If synchronous data is queued, the token is */
necessarily usable, regardless of timing conditions. */
if (svc_class == FDDI_SVC_SYNC)
{
tk_usable = 1;
break;
)
elsef
Otherwise, if asynchronous data is queued, it must */
meet several criteria for the token to be usable. */

The token is only usable only if it is early. */
if (Late_Ct == 0)
{
The token's class must be nonrestricted, unless */
this station is involved in the restricted transfer. */
if (tk_class == FDDI_TK_NONRESTRICTED || res_station
== my_address || restricted)
{
Test the frame's priority assignment against the current TRT */
This test uses the priority indirection table T_Pri */
so that only packets whose T_Pri [pri_level] exceeds */
the TRT can be transmitted. In other words, by */
assigning lower values to T_Pri for a given priority */

144

485 /* level, packets of that level will be further restricted */
486 /* from using the ring bandwidth. */

487 if (T_Pri [pri_level] >= fddi_timer_value (TRT))
488 {

489 tk_usable = 1;

490 break;

49 }

492 }

493)

494)

495 } /* closes the "if (op_subq_stat (OPC_QSTAT_PKSIZE) > 0.0°"
496 statment */

497 }/* closes the "for" loop */

498 /* If the token is usable, timers must be readjusted. */

498 if (tk_usable)

500 {

501 /* The timer adjustment depends on whether the token is early or late.
502 */

503 if (Late_Ct == 0)

504 {

505 /* Transfer the contents of TRT into THT. */
506 fddi_timer_copy (TRT, THT);
507 /* Disable the THT timer. */

508 fddi_timer_disable (THT);

509 /* Reset TRT to time the next rotation. */
510 op_ev_cancel (TRT_handle);
511 TRT_SET (my_address, op_sim_time () + Fddi_T_Opr);
512)

513 elsef

514 /* If the token is late, set the THT to its expired */
5% /* value, and disable it. This will prevent any */
516 /* asynchronous transmissions from occuring. */

517 fddi_timer_set_value (THT, Fddi_T_Opr);
518 fddi_timer_disable (THT);

519 /* clear the Late token counter (note that TRT is not modified, */
50 /* so that less than a full TTRT remains before TRT expires again. */
51 Late_Ct = 0;

522 }

523 }

524 /* If the token is not usable, different adjustments are made. */
525 else|

526 /* Again, the adjustments depend on the lateness of the token */
527 if (Late_Ct == 0)

528 {

145

ELERRBREER

EXER

543

/* 1f the token is not late, the TRT is reset to time the next rotation.
*/
op_ev_cancel (TRT_handle);
TRT_SET (my_address, op_sim_time () + Fddi_T_Opr);
)
else{
/* clear the Late token counter (note that TRT is not modified, */
/* so that less than a full TTRT remains before TRT expires again. */
Late_Ct = 0;
}

/* also, account for the time needed by the token */
/* to traverse the station, since it is about to be sent. */
/* Note: station latency is not inclusive of token */
/* transmission time, but only of the time required to */
/* process and repeat the token's symbols. */
accum_bandwidth = Fddi_St_Latency:
}
}

/** state (RCV_TK) exit executives **/
FSM_STATE_EXIT_FORCED (3, statel_exit_exec, "RCV_TK")
{
}

/** state (RCV_TK) transition processing **/
FSM_INIT_COND (tk_usable)
FSM_DFLT_COND
FSM_TEST_LOGIC (°RCV_TK"™)

FSM_TRANSIT_SWITCH
{
FSM_CASE_TRANSIT (0, 9, state9_enter_exec,
FSM_CASE_TRANSIT (1, 2, stateZ_enter_exec,

)
)

e

/** state (FR_RCV) enter executives **/
FSM_STATE_ENTER_FORCED (4, stated4_enter_exec, "FR_RCV")
{
/* A frame has been received from the physical layer. Note that */
/* at this time, only the leading edge of the frame has arrived. */

/* Extract the frame's source address (this will be used to */

/* determine whether or not to strip the frame from the ring). */
op_pk_nfd_get (pkptr. "src_addr”, &src_addr);
}

/** state (FR_RCV) exit executives **/
FSM_STATE_EXIT_FORCED (4, stated4_exit_exec, "FR_RCV")

146

512
573

574
575
576
smr

578
579

561

{
}

/** state (FR_RCV) transition processing **/
FSM_INIT_COND (STRIP)
FSM_DFLT_COND
FSM_TEST_LOGIC ("FR_RCV")

FSM_TRANSIT_SWITCH

{
FSM_CASE_TRANSIT (0, 5, state5_enter_exec, ;)
)

FSM_CASE_TRANSIT (1, 6, state6_enter_exec,

/** state (FR_STRIP) enter executives **/
FSM_STATE_ENTER_FORCED (5, state5_enter_exec, "FR_STRIP")
{
/* Destroy the frame which has now circulated the entire ring. */
op_pk_destroy (pkptr);:
)

/** state (FR_STRIP) exit executives **/
FSM_STATE_EXIT_FORCED (5, state5_exit_exec, "FR_STRIP")
{
}

/** state (FR_STRIP) transition processing **/
FSM_TRANSIT_FORCE (1, statel_enter_exec, ;)

/** state (FR_REPEAT) enter executives **/
FSM_STATE_ENTER_FORCED (6, stateb_enter_exec, "FR_REPEAT")

{

/* Extract the destinatton address of the frame. */

/* 20FEB94: use a pointer to the array dest_addr, */

/* since referring to dest_addr directly produces */

/* unexpected results. -Nix */
op_pk_nfd_get (pkptr., “dest_addr”, &da_ptr);

/*******************Q**tit**t**************************/

/* printf("*da_ptr: %d; da_ptr: %d; &da_ptr: %d\n", *da_ptr, da_ptr,

&da_ptr); */

/***t********/

for (i = 0; i < NUM_STATIONS+1l; i++);
dest_addr[i] = da_ptr(i];

/***/

/* 02MAR94: print out the address, and the contents. *x/

147

/t
/*
/*

/*
/*

for (i = 0; 1 < NUM_STATIONS+l; {++) */

{ */
printf("1.FR_REPEAT:element: %d, address: XX/%d, content:
*/

i, &(dest_addr[i]), &(dest_addr(i]), dest_addr[i]);*/

) */

/*************tt******************t*t*******t***********t/

] *

/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
[*

/*

/*
/*
/*
/*
/*

0BFEBY94: re-initfalize counters. -Nix */
for_me = 0;
count_addees = 0;

O08FEB94: inspect the address field: interested in */
whether this packet is sent here only, or here and */
to others, or to others only.Note that a real packet */
would carry all the addresses; the simulation refers */
to memory locations. -Nix */

for (i = 1; i < NUM_STATIONS+1; i++)

{

if (dest_addr{i] == 1)

count_addees += 1;
}

If the frame is for this station, make a copy */

of the frame's data field and forward it to */

the higher layer. */

if (dest_addr == my_address) */

08FEB94: if this packet is addressed only to this */
station, make a copy of the frame’'s data field and */
and forward it to the higher layer. -Nix */

(a) If the packet is addressed to me only... */

(note offset applied) ./

Xd\n",

if (dest_addr[my_address+l] == 1 &3 count_addees ==])

{

dhdkhkkkdhkrkhrhkhhhkrerrrre w/

printf(“"Here is Case 1.\n"); */
Rkt hkhkkhkrkhhkkkhhkhkhkhhhrrree &/

record total size of the frame (including data) */
pk_len = op_pk_total_size_get (pkptr);

decapsulate the data contents of the frame */
29JAN94: a new field, "pri®, has been added to */
the fddi_1lc_fr packet format in the Parameters */
Editor, so that output statistics can be */
generated by class and priority. -Nix */
op_pk_nfd_get (pkptr, "info", &data_pkptr):
op_pk_nfd_get (pkptr, "pri”, &pri_level);

148

I38EE FHTE BRBEBR

oo
IR N

691

/* The source and destination address are placed in the */

/* LLC's ICI before delivering the frame’s contents. */
op_ici_attr_set (to_llc_ici_ptr, "src_addr®, src_addr);
op_ici_attr_set (to_llc_ici_ptr, “"dest_addr®, da_ptr):
op_ici_install (to_llc_ici_ptr);

/* 18FEB94: print out the address, and the contents. */
for (i = 0: 1 < NUM_STATIONS+l; i++)
{
dest_addr[i] = da_ptr(i]:

/ *******t**************t***************t**************t*********t***t/

/* printf("2.FR_REPEAT:element: %d., address: XX/%d. content: %d\n", */
/* i, &(dest_addr[i]), &(dest_addr[1)), dest_addr[i])); */

/ khkhkkhkkhhkkhkhkhhhhhkhrrbhbhtbhbbbhdrkbhhbdhbhhrtrtrtrdhbhkhrrhhddhdhdhrdhihn /

}

/* Because, as noted in the FR_RCV state, only the */
/* frame's leading edge has arrived at this time, the */
/* complete frame can only be delivered to the higher */
/* layer after the frame's transmission delay has elapsed. */
/* (since decapsulation of the frame data contents has occured, */
/* the original MAC frame length is used to calculate delay) */
tx_time = (double) pk_len / FDDI_TX_RATE:;
op_pk_send_delayed (data_pkptr, FDDI_LLC_STRM_OUT, tx_time);

+* Note that the standard specifies that the original */

/* frame should be passed along until the originating station */

/* receives it, at which point it is stripped from the ring. */

/* However, in the simulation model, there is no interest */

/* in letting the frame continue past its destination unless */

/* group addresses are used, so that the same frame could be */

/* destined for several stations. Here the frame is stripped *

/* for efficiency as it reaches the destination; if the model *.

/* is modified to include group addresses, this should be change. =/

/* so that the frame is copied and the original repeated. */

/* Logic is already present for stripping the frame at the origin. */
op_pk_destroy (pkptr);
)

/* 08FEB94: (b)...or if this packet is not for me at all... -Nix */
else if (dest_addr(my_address+1] == ()
{

J* hkkdkhkkdkhhhkhhkhhkhhkkkhhhhhkhkkk */

/* printf("Here is Case 2.\n"); */
/* b A 22 222 22222222222 a2 22 L2 222222 */

/* Repeat the original frame on the ring and account for */
/* the latency through the station and the propagation delay */

149

dd38 H2E]3

738
739

/*
/*

/*
/t
/*
/*

/*
/*
/*

/*

/*

/*
/*
/*
/*

/*
/*

/*
/*

/*
/*
/*
/*
/*
/*

for a single hop. */
(Only the originating stat.o~ can strip the frame). */
op_pk_send_delayed . :kptr, FODI_PHY_STRM_OUT,
Fddi_St_Latency : Fddi_Prop_Delay):
}

08FEB94: (c)...or if this packet is for me and for others, will */
need to send the contents to the SINK, then re-encapsulate the */
packet for further transmission. Much of this code is */

duplicated from the above. -Nix */
else if (dest_addr[my_address+l] == 1 &k count_addees > 1)
{
dhkhkkhhhkhhbhbkhhrhkhthhkhhihd */

printf(“"Here is Case 3.\n"); */

e e 9 e e e de e e de de de de de drde e de e e de e e e e e e */

record total size of the frame (including data) */
pk_len = op_pk_total_size_get (pkptr):

decapsulate the data contents of the frame */
op_pk_nfd_get (pkptr, “"info®, &data_pkptr);
op_pk_nfd_get (pkptr, °pri®, &pri_level);

P2 ST 2RI LIS LR ARl it adad il el s */

Print out the address of the "info™ field information */
printf("Case 3: ‘info’ is located at address X¥X\n", &data_pkptr); */

ETTITILT LI TLILILL LI L S22 22 dad st adaddd s alat il ey ety */

08MAR94: copy the "info" address into a local variable., so that */
it may be held for re-installation. -Nix */
info_ptr = op_pk_copy(data_pkptr);

The source and destination address are placed in the */

LLC's ICI before delivering the frame’'s contents. */
op_ici_attr_set (to_llc_ici_ptr, "src_addr", src_addr);
op_ici_attr_set (to_llc_ici_ptr, "dest_addr", dest_addr);
op_ici_install (to_llc_ici_ptr):

Because, as noted in the FR_RCV state, only the */
frame's leading edge has arrived at this time, the */
complete frame can only be delivered to the higher */
layer after the frame’'s transmission delay has elapsed. */
(since decapsulation of the frame data contents has occured, */
the original MAC frame length is used to calculate delay) */
tx_time = (double) pk_len / FODI_TX_RATE;
op_pk_send_delayed (data_pkpt~, FODI_LLC_STRM_QUT, tx_time);

150

740 /* O08FEB94: remove this station from the dest_addr array, reassemble */
741 /* the packet, and send the packet on its way. -Nix */

742 dest_addr[my_address+1] = 0;

743 op_pk_nfd_set(pkptr,"src_addr"®, src_addr);

744 op_pk_nfd_set(pkptr,"dest_addr", dest_addr);

745 op_pk_nfd_set(pkptr,"pri®, pri_level);

746 op_pk_nfd_set(pkptr,”"info", info_ptr);

147 op_pk_send_delayed (pkptr, FDDI_PHY_STRM_OUT,

748 Fddi_St_Latency + Fddi_Prop_Delay):

749)

750 }

751 /** state (FR_REPEAT) exit executives **/

752 FSM_STATE_EXIT_FORCED (6, stateb_exit_exec, “"FR_REPEAT")
753 {

754 }

755 /** state (FR_REPEAT) transition processing **/

756 FSM_TRANSIT_FORCE (1, statel_enter_exec. ;)

[A A R */
758 /** state (TRT_EXP) enter executives **/

759 FSM_STATE_ENTER_FORCED (7, state/_enter_exec. "TRT_EXP")
760 {

) /* The timer is reset and allowed to continue running. */
762 TRT_SET (my_address, op_sim_time () + Fddi_T_Opr);

763 /* The late token counter is incremented. This will */
764 /* prevent this station from making any asynchronous */
765 /* transmissions when it next captures the token. */
766 Late_Ct++;

767 }
768 /** state (TRT_EXP) exit executives **/
769 FSM_STATE_EXIT_FORCED (7, state7_exit_exec, "TRT_EXP")
770 {
m }
172 /** state (TRT_EXP) transition processing **/
173 FSM_TRANSIT_FORCE (1, statel_enter_exec, ;)
2 B A R R AR LR R R */
775 /** state (ENCAP) enter executives **/
176 FSM_STATE_ENTER_FORCED (8, state8_enter_exec, "ENCAP")
144 {
778 /* A frame has arrived from a higher layer; place it in 'pdu_ptr'. */
779 pdu_ptr = op_pk_get (op_intrpt_strm ());

151

780
781
782
783
784
785
786
87
788
789

790

794

795
796
197

S8 &

<2288 REERE

o o o
— b —
W W

816

817
818
819
820
821

/* Also get the interface control information */
/* associated with the new frame. */
ici_ptr = op_intrpt_ici ():
if (ici_ptr == OPC_NIL)
{
sprintf (error_string, "Simulation aborted: error in object
(%d)", op_id_self ());:
op_sim_end (error_string, "fddi_mac: required ICI not
received”, * ", " ");
)

/* Extract the requested service class */
/* (e.g., synchronous or asynchronous). */
if (op_ici_attr_exists (ici_ptr, "svc_class"))
op_ici_attr_get (ici_ptr, "svc_class", &svc_class);
else svc_class = FDDI_SVC_ASYNC;

/*************************t*****************t****************t*******/

/* for (i=0; i<NUM_STATIONS+1; i++) */

/* printf("ENCAP a.Field:%d, Address(dec/hex):%d/%X, Contents:%d\n",
*/

/* i, &(dest_addr[i])), &(dest_addr[i)), dest_addr[i]); */

/******t**i******************/

/* Extract the destination address. */
/* 20FEB94: use a pointer to the array, since the */
/* use of dest_array as its own pointer causes */
/* unexpected results. -Nix */
op_ici_attr_get (ici_ptr, "dest_addr", &da_ptr);

/****************i**t*t/

/* printf("&da_ptr: %d/%X: da_ptr: %d\n\n", &da_ptr, &da_ptr. da_ptr):
*/

/* for (i=0:; i<NUM_STATIONS+1; i++) */
/* printf("%d: &da_ptr: %¥d/%X: da_ptr: %d\n\n", i, &da_ptr, &da_ptr,
da_ptr); */

/***/

for (i=0; i<NUM_STATIONS+1; i++)
{

dest_addr[i] = da_ptr[i];

)

/***/

/* for (i=0; i<NUM_STATIONS+l: i++) */

/* printf("ENCAP b.Field:¥d, Address(dec/hex):¥d/%X, Contents:%d\n",
*/

/* i, &(dest_addr[i])), &(dest_addr[i]), dest_addr[i]); */

152

823
824

827
828
830

831
832

836
837

839
841
842

846
847
849
850

851
852

856
857

858
859

861

/ 123222222 LSS 22222222222t 2222220d22d 222222222222 ¢2222s222R 222 /

/* 1f the frame is asynchronous, the priority and */
/* requested token class parameter may be specified. */
if (svc_class == FDDI_SVC_ASYNC)
{
/* Extract the requested priority level. */
if (op_ici_attr_exists (ici_ptr, "pri®))
op_ici_attr_get (ici_ptr, “pri®, &req_pri):
else req_pri = 0;

/* Extract the token class (restrictred or non-restricted). */
if (op_ici_attr_exists (ici_ptr, "tk_class”))
op_ici_attr_get (ici_ptr, "tk_class”, &req_tk_class):
else req_tk_class = FDDI_TK_NONRESTRICTED:
}

/* Compose a mac frame from all these elements. */
mac_frame_ptr = op_pk_create_fmt ("fddi_mac_fr");
op_pk_nfd_set (mac_frame_ptr, "svc_class”, svc_class);
op_pk_nfd_set (mac_frame_ptr, "dest_addr", dest_addr);:
op_pk_nfd_set (mac_frame_ptr, "src_addr"®, my_address);
op_pk_nfd_set (mac_frame_ptr, "info", pdu_ptr);

if (svc_class == FDDI_SVC_ASYNC)
{
op_pk_nfd_set (mac_frame_ptr, "tk_class", req_tk_class);
op_pk_nfd_set (mac_frame_ptr, "pri®, req_pri);
}

/* 04JAN94: if the frame 1s synchronous, assign it a separate */
/* priority so that 1t may be assigned its own subqueue, and */
/* thereby be assigned its own probe for monitoring. -Nix */

if (svc_class == FDDI_SVC_SYNC)

{

op_pk_nfd_set (mac_frame_ptr, "pri”, 8);

}

/* Assign the frame control field, which in the model */
/* is used to distinguish between tokens and ordinary */
/* frames on the ring. */
op_pk_nfd_set (mac_frame_ptr, "fc", FDDI_FC_FRAME);

/* Enqueue the frame at the tail of the queue. */
/* 27DEC93: at the tail of the prioritized queue. */
/* 04JAN94: must distinguish between synch & asynch. */
if (svc_class == FDDI_SVC_ASYNC)
{
op_subq_pk_insert (req_pri, mac_frame_ptr, OPC_QPOS_TAIL);

153

)

if (sve_class == FDDI_SVC_SYNC)

{

op_subq_pk_insert (8, mac_frame_ptr, OPC_QPOS_TAIL):
)

/* if this station has not yet registered its intent to */
/* use the token, it may do so now since it has data to send */
if (!tk_registered)
{
fddi_tk_register ();
tk_registered = 1:
}
}

/** state (ENCAP) exit executives **/
FSM_STATE_EXIT_FORCED (8, state8_exit_exec. “ENCAP™)
{
}

/** state (ENCAP) transition processing **/
FSM_TRANSIT_FORCE (1, statel_enter_exec, :)

/** state (TX_DATA) enter executives **/
FSM_STATE_ENTER_FORCED (9, state9_enter_c.ec. °"TX_DATA®)
{
/* In this state, frames are transmitted until the */
/* token is no longer usable. Frames are taken from */
/* the single input queue in FIF0 order. */

/* Reset the accumulator used to keep track of bandwidth */

/* consumed by the transmissions. Because all the transmissions */

/* are scheduled to happen at the appropriate times, but */

/* these schedulings occur instantly, this accumulator serves */

/* as the scheduling base for the transmissions. */

/* In other words, each successively transmitted frame */

/* is delayed relative to the previous one by the time which */

/* the latter took to send. At the en¢ of transmission (e.g, */

/* when the token is no longer usable), this accumulator */

/* serves to delay the forwarding of the token. */
accum_bandwidth = 0.0;

/* Note that, because all tranmsmissions are */
/* scheduled, the value of the THT timer will not progress */
/* between shcedulings (these all happen in zero time), and so */

/* the variable 'tht_value’ is used to emulate the timer’s progress.

tht_value = fddi_timer_value (THT);

/* Reset an accumulator which reflects the consumed */

154

*/

97 /* synchronous bandwidth. */
908 accum_sync = 0.0;

909 /* Reset counters for transmitted frames and bits. */
910 nur_frames_sent = 0;
9N num_bits_sent = 0:

12 /* The transmission sequence must end if the input queue */

913 /* becomes exhausted. Other termination conditions are */

914 /* embedded in the loop. */

915 /* 27DEC93: modify the loop to accomodate subqueue structure. */
916 /* A “for" loop is imposed over the original "while" loop. */
917 /* First, reset the break marker, “punt”. -Nix */

918 punt = 0;

919 for (i = NUM_PRIOS - 1; 1 > -1; i--)

920 {

9 while (op_subq_stat (i,0PC_QSTAT_PKSIZE) > 0.0)
922 {

923 /* Remove the next frame for transmission. */

924 pkptr = op_subq_pk_remove (i, OPC_QPOS_HEAD);
925 /* Obtain the frame's service class. */

926 op_pk_nfd_get (pkptr, °"svc_class”, &svc_class);
744 /* Synchronous and asynchronous frames are treated differently. */
928 if (svec_class == FDDI_SVC_SYNC)

929 {

930 /* Obtain the frame's length, and compute */

31 /* the time required to transmit it. */

932 pk_len = op_pk_total_size_get (pkptr):
3 tx_time = (double) pk_len / FDDI_TX_RATE:

934 /* C-=2ck if synchronous bandwidth allocation for this */

935 /* station would be exceeded if the transmission were to occur. */
936 if (accum_sync + tx_time > sync_bandwidth)

937 {

938 /* The frame could not be sent without exceeding */

939 /* the allocated synchronous bandwidth, */

940 /* so it is replaced on the queue. */

941 /* 27DEC93: in this case, i is the hignest priority, */

942 /* which is reserved for synchronous traffic. -Nix */

943 op_subq_pk_insert (i, pkptr, OPC_QPOS_HEAD);

944 /* Exit the transmission loop since the frame */
945 /* transmission request cannot be honored. */

946 punt = 1;
947 break;
948 }

949 else(

950 /* Send the frame into the ring after other frames have completed. */

155

970
an
972
973
974
975
976
977
978
979
980
981
982

984
985
986

987
988
989
990
991

992
993

935

/*

/*
/*

/*

/*
/*

/*

/*
/*
/*

/*

/*

/*
/*
/*

/*
/*
/*
/*
/*

Also, account for its proagation delay; because the token propagation

*x/

delay and the frame propagation delay must be consistent, and the */

token propagation delay is specified as a ring parameter (i.e,

stations */

are assumed to be equal‘y spaced), the ring is intended to run with

*/

the "delay” attributes of point-to-point links set at zero. */
op_pk_send_delayed (pkptr, FDDI_PHY_STRM_OUT,

accum_bandwidth + Fddi_Prop_Delay);

increase the consumed bandwidth to reflect this */
transmission. Also increase synchronous consumption. */
accum_bandwidth += tx_time;
accum_sync += tx_time;

Increase counters for transmitted bits and frames. */
num_frames_sent++;
num_bits_sent += pk_len;
)
}
elsef
The request enqueued at the head of the queue is */
asynchronous. It may only be honored if the THT timer */
has not expired. */
if (tht_value >= Fddi_T_Opr)
{
replace the packet on the queue and exit the transmission loop. */
op_subg_pk_insert (i, pkptr, OPC_QPOS_HEAD);
punt = 1;
break;
}
elsef
Obtain the priority assignment of the frame. */
op_pk_nfd_get (pkptr, "pri*, &pri_level);

If the packet’'s assigned priority level */
is too low for it to be serviced, then exit the loop */
after replacing the packet in the queue. */

dhkhhkkhkhkkhhkrhkhkhkkhkhrhhkhhkhhkhrhrhkhkkhhkhkhrkhhhkdhhrkkkhkhhkhithk */

08MAR94: print the values to be compared. -Nix */
printf("l. TX_DATA: T_Pri{%d] < tht_value ?\n", i); */
printf("%d < %d ?\n", T_Pri [i], tht_value); */

2223222222222 2222222222222t st i it ss s st dss s] */

if (T_Pri [pri_level] < tht_value)

{
op_subq_pk_insert (i, pkptr, OPC_QPOS_HEAD);
punt = 1;

156

996 break;
997)

998 /* Obtain the frame's length, and compute the time */

99 /* which would be required to transmit it. */

1000 pk_len = op_pk_total_size_get (pkptr):
1001 tx_time = (double) pk_len / FDDI_TX_RATE;

1002 /* Determine the requested token class to be */
1003 /* released after this frame is transmitted. */
1004 op_pk_nfd_get (pkptr, "tk_class”, &tk_class):

1005 /* If the station is in restricted mode, then it may */
1006 /* exit this mode if the class is now nonrestricted */
1007 /* or if the restricted peer is not the addressee. */

1008 if (restricted)

1009 {

1010 /* Determine the destination address for the new packet. */
1011 op_pk_nfd_get (pkptr, "dest_addr", dest_addr):
1012 /* if (tk_class == FDDI_TK_NONRESTRICTED || */

1013 /* res_peer != dest_addr) */

1014

1015 if (tk_class == FDDI_TK_NONRESTRICTED |
1016 dest_addr[res_peer] != 1)

1017 {

1018 /* Exit restricted mode */

1019 restricted = 0;

1020 /* Modify the token tc reflect the mode change. */

1021 op_pk_nfd_set (tk_pkptr, "class”,
1022 FODI_TK_NONRESTRICTED);

1023 }

1024)

1025 elsef

1026 /* Determine the class of the current captured token. */
1027 op_pk_nfd_get (tk_pkptr, "class”,

1028 ¤t_tk_class);

1029 /* When not in restricted mode, this mode may be entered */
1030 /* if the passed packet has the appropriate token class requested, */
1031 /* and the token is not already restricted. */

1032 if (tk_class == FODI_TK_RESTRICTED &&
1033 current_tk_ctass != FDDI_TK_RESTRICTED)
1034 {

1035 /* Enter restricted mode. */
1036 restricted = 1;

1037 /* Store the address of the resticted peer station. */

157

1038
1039
1040

1041
1042
1043
1044
1045
1046
1047

1048
1049
1050
1051

1052
1053
1054
1055
1056
1057

1058
1059
1060
1061

1062
1063
1064
1065
1066
1067
1068
1069
1070
107
1072
1073

1074
1075
1076
1077
1078
1079

/* op_pk_nfd_get (pkptr, "dest_addr", &res_peer); */
op_pk_nfd_get (pkptr, "dest_addr",
&dest_addr[res_peer]):

/* Modify the token to reflect the mode change. */
op_pk_nfd_set (tk_pkptr, "class”,
FOOI_TK_RESTRICTED):
op_pk_nfd_set (tk_pkptr, “"res_station”,
res_peer):
)
}

/* Send the frame once previous transmissions have completed. */
/* Account for propagation delay as well. */
op_pk_send_delayed (pkptr, FDDI_PHY_STRM_QUT,
accum_bandwidth + Fddi_Prop_Delay):

/* Increment THT emulation variable, and consumed bandwidth accumulator.
*/
/* 08MAR94: note that tht_value is incrementing, not decrementing. -Nix
*/
tht_value += tx_time:
accum_bandwidth += tx_time;

/* I2 2222222222222 3222222222222l il sissassssdd st sy */

/* 0B8MAR94: print the Token Holding Time value. -Nix */
/* printf("2. TX_DATA: tht_value is %d\n", tht_value); */

/* P2 2222222222322 22322222 232222 L sd st s st tssssssss s */

/* Increase counters for transmitted bits and frames. */
num_frames_sent++;
num_bits_sent += pk_len;
}
}
}/* closes the ‘while’ loop */
if (punt == 1) /* If the 'while’ loop was broken, */
{
punt = 0;/* then reset the 'break’ marker, */
break;/* and break out of the 'for’ loop too. */
}
})/* closes the 'for’ loop. */

/* Since the token is about to be sent, its transmission time */

/* must be refiected in the accumulated bandwidth. This is not */

/* done in the ISSUE_TK state because when the token is merely */

/* repeated, full transmission delay is not required, only */

/* a small delay for repeating. */
accum_bandwidth += FDDIC_TOKEN_TX_TIME:

158

1080 /* If the station has no more data to send (synchronous or */

1081 /* asynchronous), it should indicate this to the token acceleration */
1082 /* mechanism by deregistering its interest in the token. */

1083 /* 27DEC94: the original code must be modified to include a check */
1084 /* of subqueues. -Nix */

1085 q_check = 1;

1086 for (i = NUM_PRIOS - 1; i < -1; i--)

1087 {

1088 if (op_subq_stat (i, OPC_QSTAT_PKSIZE) == 0.0)

1089 {

1090 q_check = 0;

1091)

1092 else {

1003 g_check = 1;

1094 break:

1095 }

1096 }

1097 if (tk_registered && q_check == Q)

1098 {

1099 tk_registered = 0;

1100 fddi_tk_deregister ():

101 }

1102)

1103 /** state (TX_DATA) exit executives **/

1104 FSM_STATE_EXIT_FORCED (9, state9_exit_exec, "TX_DATA")
105 {

1106)

107 /** state (TX_DATA) transition processing **/

1108 FSM_TRANSIT_FORCE (2, state2_enter_exec, ;)

1109 A R R R R R i bt A I */
1110 /** state (CLAIM) enter executives **/

111 FSM_STATE_ENTER_UNFORCED (10, statelO_enter_exec, "CLAIM")
1112 {

1113 /* QObtain this station’s object id which is used */
1114 /* to access the station's attribute assignments. */
1115 my_objid = op_id_self ();

1116 /* Using the object id, obtain the ring id. */
1117 /* The ring id is used by macros defined in the */
1118 /* header block to obtain "ring-global” values, */
1119 /* values shared by all stations on a ring. */

1120 op_ima_obj_attr_get (my_objid, "ring_id", &ring_id);
1121 /* Initialize global variable values. */

1122 Fddi_Tk_Blocked = 0;

1123 Fddi_Num_Stations = 0;

159

1124

1125
1126
127

1128
1129
1130
13
132
1133

134
1135
1136
1137

1138
1139
1140
1141
1142
1143
1144
1145

1146
1147

1148
1149
1150
1151

1152
1153
1154
1185
1156
157

1158
1159
1160
1161
1162

1163

Fddi_Num_Registered = 0;

/* Using the object id, obtain the value of 'T_Req’, */
/* the value of TTRT requested by this station. */
op_ima_obj_attr_get (my_objid, "T_Req". &T_Req);

/* The lowest value of T_Req becomes T_Opr for the ring as a whole. */
if (T_Req < Fddi_T_Opr || Fddi_Claim_Start)
{
/* The T_Req for this station is lower than any other to date */
/* so it is installed in the T_Opr variable. */
Fddi_T_Opr = T_Req:

/* The flag indicating that the claim process is just */
/* beginning may now be cleared. */

Fddi_Claim_Start = 0;

)

/* Request a self interrupt from the Simulation Kernel at the current */
/* time so that after all stations have executed their claim states, */
/* they can proceed with initializations. This is necessasary */
/* because some initializations are based in the value of T_Opr */
/* and it must therefore be known that all stations have settled */
/* on a final value. */

op_intrpt_schedule_self (op_sim_time (), 0);

}

/** blocking after enter executives of unforced state. **/
FSM_EXIT (21,fddi_mac_muit)

/** state (CLAIM) exit executives **/
FSM_STATE_EXIT_UNFORCED (10, statelO_exit_exec, "CLAIM")
{
}

/** state (CLAIM) transition processing **/
FSM_TRANSIT_FORCE (0, state0_enter_exec, ;)

FSM_EXIT (10,fddi_mac_mult)
}

void

fddi_mac_mult_svar (prs_ptr,var_name,var_p_ptr)
fddi_mac_mult_state *prs_ptr;
char *yar_name, **var_p_ptr;

{

FIN (fddi_mac_mult_svar (prs_ptr))

160

1164
1165
1166
1167
1168
1169
1170
1n
172
173
1174
1175
1176
nun
1178
179
1180
181
1182
1183
1184
1185
1186
1187
1188
1189
1190
L)
1192
Ny
1M

1195
1196

1197
1198
1199
1200
1201
1202
1203
1204
1205

1206
1207
1208
1209
1210

*var_p_ptr = VOS_NIL;

if

if

if

if

if

f

if

if

if

if

if

if

if

if

if

(Vos_String_Equal ("ring_id" , var_name))
*var_p_ptr = (char *) (&prs_ptr->sv_ring_id);
(Vos_String_Equal ("THT® , var_name))

*var_p_ptr = (char *) (&prs_ptr->sv_THT);
(Vos_String_Equal ("T_Req" . var_name))

*var_p_ptr = (char *) (&prs_ptr->sv_T_Req);
(Vos_String_Equal ("T_Pri® , var_name))

*var_p_ptr = (char *) (prs_ptr->sv_T_Pri);
(Vos_String_Equal ("my_objid" , var_name))
*var_p_ptr = (char *) (&prs_ptr->sv_my_objid);
(Vos_String_Equal ("spawn_token" , var_name))
*var_p_ptr = (char *) (&prs_ptr->sv_spawn_token);
(Vos_String_Equal ("my_address” ., var_name))
*var_p_ptr = (char *) (&prs_ptr->sv_my_address);
(Vos_String_Equal ("tk_pkptr® , var_name))
*var_p_ptr = (char *) (&prs_ptr->sv_tk_pkptr);
(Vos_String_Equal ("sync_bandwidth®" , var_name))
*var_p_ptr = (char *) (&prs_ptr->sv_sync_bandwidth);
(Vos_String_Equal ("sync_pc" , var_name))
*var_p_ptr = (char *) (&prs_ptr->sv_sync_pc);
(Vos_String_Equal ("restricted” , var_name))
*var_p_ptr = (char *) (&prs_ptr->sv_restricted);
(Vos_String_Equal ("res_peer® , var_name))
*var_p_ptr = (char *) (&prs_ptr->sv_res_peer);:
(Vos_String_Equal ("tk_registered® , var_name))
*var_p_ptr = (char *) (&prs_ptr->sv_tk_registered);
(Vos_String_Equal ("to_1lc_ici_ptr™ , var_name))
*var_p_ptr = (char *) (&prs_ptr->sv_to_llc_ici_ptr);
(Vos_String_Equal ("tk_trace_on® , var_name))
*var_p_ptr = (char *) (&prs_ptr->sv_tk_trace_on);

FOUT:

}

void
fddi_mac_mult_diag ()

{

/* Packets and ICI's */

/*

Packet* mac_frame_ptr;
Packet™* pdu_ptr;
Packet* pkptr;

Packet* data_pkptr:
Ici* ici_ptr;

Packet Fields and Attributes */

int req_pri, svc_class, req_tk_class;
int frame_control, src_addr;

int pk_len, pri_level;

static

161

1211

1212
1213
1214
1215

1216
1217
1218

1219
1220
1221
1222
1223

1224
1225
1226
1227
1228

1229
1230
1231

1232
1233

1234

1235
1236
1237
1238

1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249

1250

/*

/*

/*

/*
/*

/*

1*

/t
/*
/*
/*

int *da_ptr, dest_addr{]:

Token - Related */

int tk_usable, res_station, tk_class;
int current_tk_class:

double accum_sync;

Timer - Related */

double tx_time, timer_remaining, accum_bandwidth;
double tht_value;

Miscellaneous */

int i;

int spawn_station, phy_arrival;

char error_string [512];

int num_frames_sent, num_bits_sent;

26DEC93: loop management varijables, used in RCV_TK */
and ENCAP states. -Nix */

int NUM_PRIOS;

int punt;

int q_check;

08FEB94: case management variables, used in FR_REPEAT. -Nix */
int for_me;
int count_addees;

08MAR94: "field holding” variables, used in FR_REPEAT. -Nix */
Packet* info_ptr;

FIN (fddi_mac_mult_diag ())

Print out values of timers, and late token counter. */
Also print out data about restricted mode. */

(This code may be executed by the simulation debugger */
by invoking the command ’modprint’). */

sprintf (str '~ mers (count upwards): TRT (%.9g)., THT (%.9g)",

fddi_timer_. .ue (TRT), fddi_timer_value (THT));
sprintf (strl, "Late_ct (%d)", Late_Ct);
op_prg_odb_print_major (str0, strl, OPC_NIL);
if (restricted)
sprintf (str0, "token is in restricted dialog with (%d)\n",
res_peer);
else sprintf (str0, "token is unrestricted\n");
op_prg_odb_print_major (str0, OPC_NIL);
FOUT:
}

void

162

1251 fddi_mac_mult_terminate ()

1252 {

1253 /* Packets and ICI's */

1254 Packet* mac_frame_ptr;

1255 Packet* pdu_ptr;

1256 Packet* pkptr;

1267 Packet* data_pkptr;

1258 Ici* ici_ptr;

1259 /* Packet Fields and Attributes */

1260 int req_pri, svc_class, req_tk_class;:
1261 int frame_control, src_addr;

1262 int pk_len, pri_level;

1263 static

1264 int *da_ptr, dest_addr(]:

1265 /* Token - Related */

1266 int tk_usable, res_station, tk_class;
1267 int current_tk_class:

1268 double accum_sync;

1269 /* Timer - Related */

1270 double tx_time, timer_remaining, accum_bandwidth;
121 double tht_value:

1272 /* Miscellaneous */

1273 int i

1274 int spawn_station, phy_arrival;

1275 char error_string [512];

1276 int num_frames_sent, num_bits_sent:

1277 /* 26DEC93: loop management variables, used in RCV_TK */

1278 /* and ENCAP states. -Nix */
1279 int NUM_PRIOS;

1280 int punt;

1281 int q_check;

1282 /* 08FEB94: case management variables, used in FR_REPEAT. -Nix */
1283 int for_me;
1284 int count_addees;

1285 /* 08BMAR94: "field holding" variables, used in FR_REPEAT. -Nix */
1286 Packet* info_ptr:

1287 FIN (fddi_mac_mult_terminate ())
1288 FOUT:
1289 }

1290 Compcode
1291 fddi_mac_mult_init (pr_state_pptr)

163

1292
1293
1294

1295

1296
1297
1298
1299
1300
1301

1302
1303
1304
1305
1306
1307
1308
1309
1310

131
1312
1313
1314

1315
1316
1317
1318
1319
1320
1321
1322

1323
1324
1325
1326

1327
1328
1329
1330
1331
1332
1333
1334

/**

/*t

/i*

] x*

/*

] *

/*

] *

/*

fddi_mac_mult_state **pr_state_pptr:

{
static VosT_Cm_Obtype obtype = OPC_NIL:

FIN (fddi_mac_mult_init (pr_state_pptr))

if (obtype == QOPC_NIL)

{
if (Vos_Catmem_Register ("proc state vars (fddi_mac_mult)", sizeof

(fddi_mac_mult_state), Vos_Nop, &obtype) == VOSC_FAILURE)
FRET (OPC_COMPCODE_FAILURE)
}

if ((*pr_state_pptr = (fddi_mac_muit_state*) Vos_Catmem_Alloc
(obtype, 1)) == QPC_NIL)
FRET (OPC_COMPCODE_FAILURE)

else

{
(*pr_state_pptr)->current_block = 20;

FRET (OPC_COMPCODE_SUCCESS)
)
}

The procedures defined in this section serve **/

to simplify the code in the main body of the **/
process model by providing primitives for timer **/
manipulation.. **/

fddi_timer_disable (timer_ptr)
FAdiT_Timer* timer_ptr:
{
if the timer is already disabled, do nothing */
if (timer_ptr->enabled)
{
disable the timer */
timer_ptr->enabled = 0:

reassign the accumulated time so far */
timer_ptr->accum = op_sim_time () - timer_ptr->start_time;
}
]

fddi_timer_enable (timer_ptr)
FddiT_Timer=* timer_ptr;
{
if the timer is already enabled, simply return */
if (!timer_ptr->enabled)
{
reenable the timer */
timer_ptr->enabled = 1:

164

1335 /* set the start time to the current time */
1336 /* less the accumulated time so far */

1337 timer_ptr->start_time = op_sim_time () - timer_ptr->accum;
1338 }

1339 }

1340 fddi_timer_expired (timer_ptr)

1341 FddiT_Timer* timer_ptr;

1342 {

1343 if (fddi_timer_remaining (timer_ptr) <= 0.0)

1344 return 1:

1345 else return 0;

1346 }

1347 double

1348 fddi_timer_remaining (timer_ptr)

1349 FAdiT_Timer* timer_ptr:

1350 {

1351 /* if the timer is enabled, update the accumulated time */

1352 if (timer_ptr->enabled)

1353 {

1354 timer_ptr->accum = op_sim_time () - timer_ptr->start_time;
1355 }

1356 /* return the timer remaining before expiration */
1357 /* a non-positive value indicates an expired timer */

1358 return (timer_ptr->target_accum - timer_ptr->accum);
1359 }

1360 double

1361 fddi_timer_value (timer_ptr)

1362 FddiT_Timer=* timer_ptr:

1363 {

1364 /* if the timer is enabled, update the accumulated time */
1365 if (timer_ptr->enabled)

1366 {

1367 timer_ptr->accum = op_sim_time () - timer_ptr->start_time;
1368 }

1369 return (timer_ptr->accum);

1370 }

1371 fddi_timer_set_value (timer_ptr, value)

1372 FddiT_Timer~* timer_ptr;

1373 double value;

1374 {

1375 timer_ptr->accum = value;

1376 }

1377 fddi_timer_copy (from_timer_ptr, to_timer_ptr)

165

1378 FddiT_Timer* from_timer_ptr:

1379 FddiT_Timer* to_timer_ptr;

1380 {

1381 Vos_Copy_Memory (from_timer_ptr, to_timer_ptr, sizeof

1382 (FddiT_Timer)):;

1383)

1384 fddi_timer_set (timer_ptr, duration)

1385 FadiT_Timer* timer_ptr;

1386 {

1387 /* clear out accumulated time */

1388 timer_ptr->accum = 0.0;

1389 /* assign the timer duration */

1390 timer_ptr->target_accum = duration;

1391 /* assign the current time */

1302 timer_ptr->start_time = op_sim_time ();

1383 /* enable the timer */

1394 timer_ptr->enabled = 1;

13985)

1396 FddiT_Timer*

1397 fddi_timer_create ()

1398 {

1399 FAdiT_Timer* timer_ptr;

1400 /* allocate memory for a timer structure */

1401 timer_ptr = (FddiT_Timer*) malloc (sizeof (FddiT_Timer));

1402 /* initialize the timer in the disabled mode */

1403 fddi_timer_init (timer_ptr);

1404 /* return the timer's address */

1405 return (timer_ptr):

1406 }

1407 fddi_timer_init (timer_ptr)

1408 FddiT_Timer* timer_ptr;

1409 {

1410 /* the timer is initially disabled */

1411 timer_ptr->enabled = 0;

1412 /* the accumulated time is zero */

1413 timer_ptr->accum = 0.0;

1414 /* the target accumulated time is infinite */

1415 timer_ptr->target_accum = VOS_DOUBLE_INFINITY;
166

1416 /* the start time is now */

1417 timer_ptr->start_time = op_sim_time ();
1418)

1419 fddi_station_register (address, objid)
1420 Objid objid:;

1421 int address;

1422 {

1423 /* Fill an entry in the table which maps station */
1424 /* addresses to OPNET object ids */

1425 FIN (fddi_station_register (address. objid))

1426 Fddi_Address_Table [address] = objid:

1427 /* Keep track of total number of stations on the ring */
1428 Fddi_Num_Stations++;

1429 FOUT

1430 }

1431 fddi_tk_register ()

1432 {

1433 /* Register the station’s intent to use the token. */
1434 /* This should be done whenever an unregistered */
1435 /* station obtains new data to transmit. */

1436 FIN (fddi_tk_regsister ())

1437 /* increase the number of registered stations */
1438 fddi_Num_Registered++;

1439 /* if the token is currently blocked, unblock it */
1440 if (Fddi_Tk_Blocked && Fddi_Tk_Accelerate)
1441 {

1442 fddi_tk_unblock ():

1443)

1444 Fout

1445 }

1446 fddi_tk_deregister ()

1447 {

1448 /* Cancel the station's intent to use the token. */
1443 /* This should be done whenever a registered */
1450 /* station exhausts its transmittable data. */

1451 FIN (fddi_tk_deregsister ())

1452 /* decrease the number of registered stations */
1453 Fddi_Num_Registered--;

1454 FOUT

167

1455)

1456 fddi_tk_indicate_no_data (token, address., delay)

1457 Packet* token;

1458 int address;

1459 double delay:

1460 {

1461 FIN (fddi_tk_indicate_no_data (token, address, delay))

1462 /* The calling station is indicating that it has captured */
1463 /* the token, but has no data to send. If no other stations */
1464 /* have data to send either, the token may be blocked to gain */

1465 /* simulation efficiency. */

1466 if (Fddi_Num_Registered == 0 L& Fddi_Tk_Accelerate)

1467 {

1468 fddi_tk_block (token, address);

1469 }

1470 elsef

14N /* [f the token cannot be blocked, send it into the ring. */

1472 op_pk_send_delayed (token, FODI_PHY_STRM_OUT,

1473 delay + Fddi_Prop_Delay):

1474 }

1475 FOUT

1476)

1477 fadi_tk_block (token, address)

1478 Packet* token;

1479 int address;

1480 {

1481 int t;

1482 FIN (fddi_tk_block (token, address))

1483 /* Record the address of the blocking station and blocking time. */
1484 Fddi_Tk_Block_Base_Time = op_sim_time ():

1485 Fddi_Tk_Block_Base_Station = address;

1486 if (tk_trace_on == OPC_TRUE)

1487 {

1488 sprintf (str0, "Blocking Token: station (%d), time (%.9f)",
1489 Fddi_Tk_Block_Base_Station, Fddi_Tk_Block_Base_Time);
1490 op_prg_odb_print_major (str0, OPC_NIL);

1491 }

1492 /* Indicate that the token is blocked */
1493 Fddi_Tk_Blocked = 1;

1494 /* discard the token packet; another one will be */

1495 /* created when the token is unblocked. */
1496 op_pk_destroy (token);

168

1497
1498
1499
1500
1501
1502
1503
1504
1505

1506
1507
1508
1509
1510
1511

1512
1513
1514
1515
1516

1517
1518
1519
1520
1521
1522

1523

1524
1525

1526
1527

1528
1529
1530
1531
1532

1533
1534
1635
1536
1837
1538

/*
/*
/*

/*
/*
/*

/*

/*

/*

/*

Cancel TRT timers at all MAC interfaces; otherwise these */
timers may continue to expitr during the idle period, */
generating unnecessary events. */

if (tk_trace_on == OPC_TRUE)

{
sprintf (str0, "Canceling timers for (%d) stations”,

Fddi_Num_Stations);
op_prg_odb_print_major (str0, OPC_NIL);
)

for (i = 0; i < Fddi_Num_Stations; i++)
{
Retain the time at which the TRT would have expired; */
this is used for calculations when the token is */
reinjected into the ring. */
Fddi_Trt_Exp_Time [i] = op_ev_time (Fddi_Trt_Handle [i]);

Cancel the TRT expiration event. */
op_ev_cancel (Fddi_Trt_Handle [i]);
}
FOuT
}

fddi_tk_unblock ()
{

double elapsed_time, first_tk_rx, last_tk_rx;
double tk_lap_time, next_time, current_time;
double dbl_num_hops. num_tk_rx, floor (), ceil ();
int i, num_hops., next_station;

FIN (fddi_tk_unblock ())

reset the blocking indicator */
Fddi_Tk_Blocked = 0;

Get the current time, used for m.ny calculations below */
current_time = op_sim_time ();

if (tk_trace_on == QPC_TRUE)
{
sprintf (str0, "Unblocking token for ring (%d)", ring_id);
op_prg_odb_print_major (str0, OPC_NIL);
}

For all stations on the ring, adjust TRT timer and Late_Ct flag.
for (i = 0; i < Fddi_Num_Stations; i++)
{
if (tk_trace_on == QPC_TRUE)

{
sprintf (str0, "adjusting state of station (%d)", 1i);

169

*/

1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553

1554
1555
1586
1557
1558
1559
1560
1561
1562
1563
1564

1565
1566
1567
1568
1569
1570
1571

1572
1573
1574
1575
1576
1577
1578
1579
1580

1581
1582
1583
1584

/*

/*

/*

/*

/*

/*

/*

/*
/*

op_prg_odb_print_minor (", str0, OPC_NIL);
)
Calculate number of hops separating station i from block base
station. */
In special case where i is the base station, the token must run a
full */
lap before returning. */
if (i != Fddi_Tk_Block_Base_Station)
{
num_hops = (i - Fddi_Tk_Biock_Base_Station) %
Fddi_Num_Stations;
if (num_hops < Q)
num_hops = Fddi_Num_Stations + num_hops;:
}
else num_hops = Fddi_Num_Stations;:

Calculate first time at which token would have been received by
station i. */
N>te that initial release of token from base station takes a
different */
amount of time than repeating of token by other stations. Thus, the
first */
hop is assumed, and the base time is augmented by the time required
to */
complete it. */f

first_tk_rx = Fddi_Tk_Block_Base_Time + FODIC_TOKEN_TX_TIME +

Fddi_Prop_Delay + (num_hops - 1) * Fddi_Tk_Hop_Delay:

if (tk_trace_on == OPC_TRUE)
{
sprintf (str0, "station is (%d) hops from base”, num_hops);
sprintf (strl, "first receipt of token would be at (%.9f)",
first_tk_rx);
op_prg_odb_print_minor (str0, strl, OPC_NIL);
)

Case 1: the token would not yet have been received by station i. */
i€ (first_tk_rx > current_time)
{
Case 1la: the TRT at station i would not yet have expired. */
if (Fddi_Trt_Exp_Time [i] > current_time)
{
Late_Ct remains at 1 original value; only the TRT needs */
to be started again, «ith the same expiration time. */
TRT_SET (i, Fddi_Trt_Exp_Time [i])

if (tk_trace_on == QPC_TRUE)

{
sprintf (str0, "Restoring TRT to previous exp. time
(%.9f)", Fddi_Trt_Exp_Time [i]);

170

1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
159

1597
1598
1599
1600
1601
1602
1603
1604
1605

1606
1607
1608
1609
1610
1611
1612
1613
1614

1615
1616
1617

1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630

/*

/*

/*

/*

/*
/*

/*

/*

/*

op_prg_odb_print_minor ("Token would not be received
and TRY not expired®, strQ, OPC_NIL);
}
}
Case lb: the TRT at station i would have expired. */
else
{
Late_Ct would have been set: also the timer would have been
rescheduled */
for an entire TTRT at the time of expiration. *x/
Fddi_Late_Ct [i] = 1:
TRT_SET (i, (Fddi_T_Opr + Fddi_Trt_Exp_Time [i]))

if (tk_trace_on == QOPC_TRUE)
{
sprintf (str0, °"Restoring TRT to proper exp. time
(%.9fF;", Fddi_T_Opr + Fddi_Trt_Exp_Time [i]);
op_prg_odb_print_minor ("Token would not be received
and TRT would have expired”®, str0, OPC_NIL);

}
}

Case 2: the token would have been received (perhaps more than once).
*/
else

{
Calculate the number of times the token would have been received */
not including the first receipt. */

tk_lap_time = Fddi_Tk_Hop_Delay * Fddi_Num_Stations;

num_tk_rx = floor ((current_time - first_tk_rx) /

tk_lap_time); ’

Calculate the latest time at which the token would have been

received. */
Tast_tk_rx = first_tk_rx + (num_tk_rx * tk_lap_time);

Clear Late_Ct and schedule timer to expire at last receipt of token
*/
plus one full TTRT. */
Fddi_Late_Ct [i] = 0:
TRT_SET (i, (last_tk_rx + Fddi_T_Opr))
if (tk_trace_on == QPC_TRUE)
{
sprintf (str0, "token received (%g) times, last receipt
at (%.9f)", num_tk_rx + 1.0, last_tk_rx):
sprintf (strl, "Restoring TRT to proper exp. time
(%.9F)", last_tk_rx + Fddi_T_0Opr);
op_prg_odb_print_minor ("Token would have been received;
Late_Ct is cleared”, strl, strQ, OPC_NIL);

171

1631
1632
1633

1634
1635

1636
1637
1638
1639
1640
164t
1642
1643
1644
1645
1646
1647

1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662

1663
1664

1665
1666
1667
1668

1669
1670
1671
1672
1673

/*

/*
/*
/*
/*

/*
/'k

/*

/*
/*
/*
/*
/*

/*
/*

/*

/*
/*

/*
/*
/*

}

compute the time since the token was blocked */
elapsed_time = current_time - Fddi_Tk_Block_Base_Time:

compute the number of hops completed on the ring. For the first hop
*/
the token is transmitted directly, not repeated. For all remaining
*/
hops, the delay is the station latency plus the propagation delay.
*/
Thus, the first hop is assumed, and the remaining time for
additional*/
hops is computed beginning at the time where the token enters the */
base station’'s downstream neighbor */

dbl_num_hops = 1.0 + (elapsed_time - FODIC_TOKEN_TX_TIME -

Fddi_Prop_Delay) / Fddi_Tk_Hop_Delay;

I[f the token was unblocked in less time than it would have taken to
*/
be fully transmitted by the base station, dbl_num_hops will be */
negative. However, 1 full hop would still be required before the */
token could be used, since the station had already committed to */
issuing the token. Thus, the actual of number of hops should never */
be less than 1. If it is, round it to 1. */
if (dbl_num_hops < 1.0)
dbl_num_hops = 1.0;
else
{
In all other cases, round the number of hops up to the nearest */
integer value. [f already an integer, then leave as is. */
dbl_num_hops = ceil (dbl_num_hops):
}

Obtain an integer equivalent of dbl_num_hops. */
num_hops = dbl_num_hops;

Based on the number of hops and the base station, compute the */
next station where the token will appear. */
next_station = (num_hops + Fddi_Tk_Block_Base_Station) %
Fddi_Num_Stations;

Compute the time at which the token will appear there. */
Again, assume the first hop occurred, and measure time */
from there forward. */
next_time = Fddi_Tk_Block_Base_Time + (FDDIC_TOKEN_TX_TIME +
Fddi_Prop_Delay) + (dbl_num_hops - 1.0) * Fddi_Tk_Hop_Delay;

172

1674
1675
1676
1677
1678
1679

1680
1681

1682
1683

1684
1685
1686
1687
1688
1689

1690
1691
1692
1693
1694
1695
1696

1697
1698

1699
1700
1701
1702
1703

1704
1705

1706
1707
1708
1709
1710
1m
1712
1m3
1714
1715

/*

/*

/*
/*
/*
/*
/*

/*
/*

/*

/*

/*

/*

if (tk_trace_on == QOPC_TRUE)

{
sprintf (str0, “"Re-introducing token at station (%d), at time

(%.9f)", next_station, next_time);
op_prg_odb_print_minor (strQ, OPC_NIL);
)

reinject the token at that station */
fddi_tk_inject (next_station, next_time):

FOUT
}

fddi_tk_inject (address, arv_time)
int address;
double arv_time;

{
Re-insert the token into the ring after an idle period. */

FIN (fddi_tk_inject (address, arv_time))

The token is recreated and reinserted onto the ring */
at the specified station which is not necesssarily the */
station now requesting the token. */
The station which will r- ‘nsert the token is */
asked to do so by means .: a remote interrupt. */
op_intrpt_schedule_remote (arv_time, FDDIC_TK_INJECT,
Fddi_Address_Table [address]);

FoOuT
}

fddi_load_frame_attrs (dest_addr_ptr, svc_class_ptr, pri_level_ptr)

int *dest_addr_ptr, *svc_class_ptr, *pri_level_ptr;
{

int NUM_PRIOQS, i: /* 26JAN94 */
Packet *pkptr:

FIN (fddi_load_frame_attrs (dest_addr_ptr, svc_class_ptr,
pri_level_ptr))

remove next packet in queue */

E;DEC94: loop structure superimposed to handle a bank of subqueues.
Extract the packet with the highest priority, that is, the packet
ié the head of the highest-numbered subqueue containing packets.
Eéte that the C language vector numbering convention numbers the
sébqueues from 0 to 7, while FDDI convention is to number the */

173

1716 /* corresponding asynchronous priorities from 1 to 8. This is */

1nm7 /* reconciled in the statistical outputs available in the Analysis */
118 /* Editor, where labels are assigned accordingly. Also note that */
1719 /* synchronous traffic is assigned priority 8 as an artifice to allow
1720 */

1 /* routing through a separate subqueue, by which statistics may be */
1722 /* gathered for traffic by class and by priority. -Nix */

1723 NUM_PRIOS = 9;

1724 for (i = NUM_PRIOS - 1; i > -1; i--)

1725 {

1726 if (op_subq_stat (i, OPC_QSTAT_PKSIZE) > 0.0)
1721 {

1728 pkptr = op_subq_pk_remove (1, OPC_QPOS_HEAD);
1729 break;

1730 }

173)

1732 /* extract the fields of interest */

1733 op_pk_nfd_get (pkptr, "dest_addr®, dest_addr_ptr);
1734 op_pk_nfd_get (pkptr, °"svc_class®, svc_class_ptr);
1735 /* only read priority level if frame 1s asynchronous */
1736 if (*svc_class_ptr == FDDI_SVC_ASYNC)

1737 op_pk_nfd_get (pkptr, “pri®, pri_level_ptr);
1738 /* replace the packet on the proper subqueue */

1739 op_subq_pk_insert (1, pkptr, OPC_QPOS_HEAD);

1740 FOUT

1741 }

174

D —

DO W

o ~

10
11

12
13
14

15
16

17
18

19
20
21

23
24
2%
26
27

APPENDIX F. SOURCE "C" CODE:

"fddi_gen_mult.pr.c"

The line numbering in this appendix is used for reference within this thesis only, and

does not correspond with that seen in OPNET®s text editors.

/* Process model C form file: fddi_gen_mult.pr.c */
/* Portions of this file Copyright (C) MIL 3, Inc. 1992 */

/* OPNET system definitions */
#include <opnet.h>

ffinclude "fddi_gen_mult.pr.h"
FSM_EXT_DECS

/* Header block */

fidefine MAC_LAYER_OUT_STREAM 0

/* define possible service classes for frames */
fidefine FDDI_SVC_ASYNC 0

fidefine FDDI_SVC_SYNC 1

/* define token classes */
ffdefine FDDI_TK_NONRESTRICTED 0
ffdefine FDDI_TK_RESTRICTED 1

/* Q7FEB94: define the number of stations */
fidefine NUM_STATIONS 50

/* a global counting variable */
/* nt genARRIVAL = 0; */

/* State variable definitions */
typedef struct

{
FSM_SYS_STATE

Distribution* sv_inter_dist_ptr;
Distribution* sv_len_dist_ptr;
Distribution* sv_dest_dist_ptr:
Distribution* sv_pkt_priority_ptr;
Objid sv_mac_objid;

175

EX28BELERREBELERI

RRVBLBEIELKRLEE2L2ESEISEER

3

SA3B8T

o

Objid sv_my_1id;

int sv_low_dest_addr:

int sv_high_dest_addr;
int sv_station_addr;

int sv_low_pkt_priority;
int sv_high_pkt_priority;
double sv_arrival_rate;
double sv_mean_pk_len;
double sv_async_mix;

Ici* sv_mac_iciptr;
Distribution* sv_num_addees_dist_ptr;
int sv_num_addees;

int sv_min_num_addees;
int sv_max_num_addees;
int sv_dest_addr[NUM_STATIONS+1];

} fddi_gen_mult_state;

jidefine pr_state_ptr
SimI_Mod_State_Ptr)
jffdefine inter_dist_ptr
f#idefine len_dist_ptr
fidefine dest_dist_ptr
#define pkt_nriority_ptr
f#fdefine mac_ob)id
ffdefine my_id

{fdefine low_dest_addr
f#define high_dest_addr
fldefine station_addr
fidefine low_pkt_priority
f##define high_pkt_priority
{#{define arrival_rate
fidefine mean_pk_len
f#define async_mix
ffdefine mac_iciptr
fidefine num_addees_dist_ptr
ffdefine num_addees
{fdefine min_num_addees
fidefine max_num_addees
fidefine dest_addr

/* Process model interrupt
void

fddi_gen_mult ()
{

Packet *pkptr;

int pklen;

int *da_ptr:

int i, restricte

((fddi_gen_mult_state*)

pr_state_ptr->sv_inter_dist_ptr
pr_state_ptr->sv_len_dist_ptr
pr_state_ptr->sv_dest_dist_ptr
pr_state_ptr->sv_pkt_priority_ptr
pr_state_ptr->sv_mac_objid
pr_state_ptr->sv_my_id
pr_state_ptr->sv_low_dest_addr
pr_state_ptr->sv_high_dest_addr
pr_state_ptr->sv_station_addr
pr_state_ptr->sv_low_pkt_priority
pr_state_ptr->sv_high_pkt_priority
pr_state_ptr->sv_arrival_rate
pr_state_ptr->sv_mean_pk_len
pr_state_ptr->sv_async_mix
pr_state_ptr->sv_mac_iciptr
pr_state_ptr->sv_num_addees_dist_ptr
pr_state_ptr->sv_num_addees
pr_state_ptr->sv_min_num_addees
pr_state_ptr->sv_max_num_addees
pr_state_ptr->sv_dest_addr

handling procedure */

d;

176

~~d =3
[3 0

-~
(o]

ELRE 2B=2BIIS

LCHEELB 8RL8Z

288

2ERS

28

107

108
109
10
m
12
13

int pkt_prio;
int nix;

FSM_ENTER (fddi_gen_mult)

FSM_BLOCK_SWITCH

/** state (INIT) enter executives **/
FSM_STATE_ENTER_UNFORCED (0, stateO_enter_exec, "INIT®)
{
/* determine id of own processor to use in finding attrs */
my_id = op_id_self ();

/* 07FEB94: determine the upper and lower limits for multiple */

/* addressing from this station. -Nix */
op_ima_obj_attr_get (my_id, °*min num addees”, &min_num_addees);
op_ima_obj_attr_get (my_id, "max num addees®, &max_num_addees);

/* Q07FEB94: set up a distribution for the number of stations */
/* receive this packet. -Nix */
num_addees_dist_ptr = op_dist_load (“uniform_int",
min_num_addees, max_num_addees);

/* determine address range for uniform desination assignment */
op_ima_obj_attr_get (my_id, "low dest address”,
&low_dest_addr);
op_ima_obj_attr_get (my_id, “"high dest address”®,
&high_dest_addr);

/* determine object id of connécted 'mac’ layer process */
mac_objid = op_topo_assoc (my_id, OPC_TOPO_ASSOC_OUT,
OPC_OBJIMTYPE_MODULE, MAC_LAYER_OUT_STREAM);

/* determine the address assigned to it */
/* which is also the address of this station */
op_ima_obj_attr_get (mac_objid, "station_address",
&station_addr);

/* set up a distribution for generation of addresses */
dest_dist_ptr = op_dist_load ("uniform_int", low_dest_addr,
high_dest_addr);

/* added 26DEC93 */
/* determine priority range for uniform traffic generation */
op_ima_obj_attr_get (my_id, “high pkt priority",
&high_pkt_priority);
op_ima_obj_attr_get (my_id, "low pkt priority",
&low_pkt_priority);

177

114
15
116

17

118
19

120
121
122
13
124

125
126
127
128
128
130

k)
132

133
134
135
136
137

138
139
140
141
142
143
144

145
146

147
148
148
150

151
152
153

/* set up a distribution for generation of priorities */
pkt_priority_ptr = op_dist_load (“uniform_int",
low_pkt_priority, high_pkt_priority):

/* above added 26DEC93 */

/* also determine the arrival rate for packet generation */

op_ima_obj_attr_get (my_id, ®arrival rate®, &arrival_rate):

/* determine the mix of asynchronous and synchronous */

/* traffic. This is expressed as the proportion of */

/* asynchronous traffic. i.e a value of 1.0 indicates */
/* that all the produced traffic shall be asynchronous. */

op_ima_obj_attr_get (my_id, “async_mix®, &async_mix);

/* set up a distribution for arrival generations */
if (arrival_rate != 0.0)
{

/* arrivals are exponentially distributed, with given mean */

inter_dist_ptr = op_dist_load ("constant", 1.0 /

arrival_rate, 0.0);

/* determine the distribution for packet size */

op_ima_obj_attr_get (my_id, "mean pk length®, &mean_pk_len)

/* set up corresponding distribution */

len_dist_ptr = op_dist_load (“constant”, mean_pk_len, 0.0):

/* designate the time of first arrival */
fddi_gen_schedule ();

/* set up an interface control information (ICI) structure */

/* to communicate parameters to the mac layer process */
/* (it is more efficient to set one up now and keep it */

/* as a state variable than to allocate one on each packet xfer) */

mac_iciptr = op_ici_create ("fddi_mac_req"):
)
}

/** blocking after enter executives of unforced state. **/
FSM_EXIT (1,fddi_gen_mult)

/** state (INIT) exit executives **/
FSM_STATE_EXIT_UNFORCED (0, stateQ_exit_exec, "INIT"
{
)

/** state (INIT) transition processing **/
FSM_TRANSIT_FORCE (1, statel_enter_exec, ;)

)

154
155
156
157
158

159
160
161
162
163
164

165
166
167
168
169
170

in

172
L

174
175
176
i
178
179
180
181
182
183
184

185
186
187
188
189
190
191
192
193
194

195
19

/** state (ARRIVAL) enter executives =*x/

/*

/t
/*

/*
/*
]*
/*
/*
]*

/*

/*

/*

/*
/*
/*
/*
/*
/*

/*

/*

FSM_STATE_ENTER_UNFORCED (1, statel_enter_exec, "ARRIVAL®")
{
determine the length of the packet to be generated */
pklen = op_dist_outcome (len_dist_ptr):

O7FEB94: re-initialize the destination address array */
to zeros. -Nix */

for (i = 0; i < NUM_STATIONS+1; i++)

{

dest_addr[i]) = 0;

}

determine the destination */

don't allow this station’'s address as a possible outcome */
gen_packet: */

dest_addr = op_dist_outcome (dest_dist_ptr); */

if (dest_addr != -1 && dest_addr == station_addr) */

goto gen_packet: */

07FEB94: determine the destinations. -Nix */

Determine the number of stations to receive this packet */
num_addees = op_dist_outcome (num_addees_dist_ptr);

Find these stations., using num_addees as a counter. -Nix */
for (i = num_addees: { > 0; 1--)
{
gen_packet:
nix = op_dist_outcome (dest_dist_ptr);
if (dest_addr[nix] == 1 || nix == station_addr)
{
goto gen_packet;

)
dest_addr[nix] = 1;
1

¢

O5MAR94: because the op_pk_nfd_get() command in FR_REPEAT */
overwrites the first field with the array address, an */*/
offset needs to be applied so that the dest_array[0] */

contents aren’t lost; that is, one field more than the */*x/
number of stations is included to allow a one-step shift */
that will preserve the address array. In fddi_mac, all */

references to dest_addr must allow for this shift. -Nix */
for (i=NUM_STATIONS: i>0; i--)
dest_addr[i]) = dest_addr[i-1];

26DEC94 & 29JAN94: determine its priority */
pkt_prio = op_dist_outcome (pkt_priority_ptr);

179

197 /* create a packet to send to mac */

198 pkptr = op_pk_create_fmt ("fddi_llc_fr");

199 /* assign its overall size. */

200 op_pk_total_size_set (pkptr, pklen);

20 /* assign the time of creation */

202 op_pk_nfd_set (pkptr, "cr_time", op_sim_time ());

203 /* place the destination address into the ICI */
/* (the protocol_type field will default) */

X}
r

205 /* 15MAR94: note that dest_addr now serves as a */
206 /* pointer to an array in memory, as it is the */

207 /* name of an array of what will be 0s and 1s. -Nix */

208 op_ici_attr_set (mac_iciptr, “"dest_addr®, dest_addr):

209 /* assign the priority, and requested token class */
210 /* also assign the service class */

211 /* 29JAN94: the fddi_llc_fr format is modified */
212 /* to include a "pri" field. -Nix */

213 if (op_dist_uniform (1.0) <= async_mix)

214 {

25 op_pk_nfd_set (pkptr, "pri®, pkt_prio);/* 29JAN94 */

26 op_ici_attr_set (mac_iciptr, "svc_class®, FDDI_SVC_ASYNC):

a7 op_ici_attr_set (mac_iciptr, "pri", pkt_prio); /* 29JAN94
218 */

219 }

220 elsel

2 op_pk_nfd_set (pkptr, "pri®, 8);/* 29JAN94 */

222 op_ici_attr_set (mac_iciptr, “"svc_class”, FDDI_SVC_SYNC);
223 op_ici_attr_set (mac_iciptr, "pri®, 8);: /* 29JAN94 */
224 }

225 /* Request only nonrestricted tokens after transmission */
226 op_ici_attr_set (mac_iciptr, "tk_class”,
227 FDDI_TK_NONRESTRICTED);

228 /* send the packet coupled with the ICI */

229 op_ici_install (mac_iciptr);

230 up_pk_send (pkptr, MAC_LAYER_OUT_STREAM);

231 /* ddkkdkdkhkhkhkdkhhhhrhhhhkhhthhbthrhhkhddrbhdbrththrrdhhbhkddst */
232 /* 17MAR94: count and report the running total number */
233 /* of packets generated. -Nix */

234 /* dhdhkdhhhikhhhhhhhhkhkhrrkhkhhkhhhdhhhkhrbhrrrhbhhthhdhhtr */

235 /* genARRIVAL ++; */
236 /* printf("Packets generated: %d\n", genARRIVAL); */

180

237 /* schedule the next arrival */
238 fddi_gen_schedule ():

239 /* I Y212 2222222222222 3232 222 222122 asd st titsstassssdss sy t/

240 /* 18FEB94: print out the address, and the contents. */
241 /* for (i=0; T<NUM_STATIONS+1; i++) */

242 /* printf("ARRIVAL: %d. address: XX; contents: %d\n", */

243 /* 1, &(dest_addr[i]), dest_addr[i]); */

244 /t P e L L e 2222223222322 222223228222 2R 222332 2 242224 */

245 }

286 /** blocking after enter executives of unforced state. **/

247 FSM_EXIT (3,fddi_gen_mult)

248 /** state (ARRIVAL) exit executives **/

249 FSM_STATE_EXIT_UNFORCED (1, statel_exit_exec, “ARRIVAL®")

250 {

251 }

252 /** state (ARRIVAL) transition processing **/

253 FSM_TRANSIT_FORCE (1, statel_enter_exec., ;)

254 R LR SRR LR AL AR R R AR */

255 }

256 FSM_EXIT (0,fddi_gen_mult)

257 }

258 void

259 fddi_gen_mult_svar (prs_ptr,var_name,var_p_ptr)

260 fddi_gen_mult_state *ors_ptr;

261 char *yvar_name, **var_p_ptr;

262 {

263 FIN (fddi_gen_mult_svar (prs_ptr))

264 *var_p_ptr = VOS_NIL;

265 if (Vos_String_Equal (°inter_dist_ptr" , var_name)) *var_p_ptr =
266 (char*) (&prs_ptr->sv_inter_dist_ptr);

267 if (Vos_String_Equal (*len_dist_ptr" , var_name)) *var_p_ptr =
268 (char*) (&prs_ptr->sv_len_dist_ptr);

269 if (Vos_String_Equal ("dest_dist_ptr" , var_name)) *var_p_ptr =
270 (char*) (&prs_ptr->sv_dest_dist_ptr);

2n if (Vos_String_Equal ("pkt_priority_ptr" , var_name)) *var_p_ptr =
272 (char*) (&prs_ptr->sv_pkt_priority_ptr);

273 if (Vos_String_Equal ("mac_objid" , var_name)) *var_p_ptr = (char*)
274 (&prs_ptr->sv_mac_objid);

275 if (Vos_String_Equal ("my_id" , var_name)) *var_p_ptr = (char¥*)
276 (&prs_ntr->sv_my_id):

217 if (Vos_String_Equal ("low_dest_addr® , var_name)) *var_p_ptr =
278 (char*) (&prs_ptr->sv_low_dest_addr);

181

219
280
281
282
283
284

286
287

289
2%
291
292

2%
2%
297

2%
300
30
302
303
304
305
306

307
308
309
310
mn
312

313
34
315

316

7
318

39
320
32
322
323

if
if
if
if
if
if
if
if
if
if
if
if
if

Fou
)

void

fddi_g
{
Pac
int
int

int
int
int

FIN

FOU
}

void

fddi_g
{
Pac
int

(Vos_String_Equal (*high_dest_addr" , var_name)) *var_p_ptr =
(char*) (&prs_ptr->sv_high_dest_addr);

(Vos_String_Equal (°"station_addr® , var_name)) *var_p_ptr =
(char*) (&prs_ptr->sv_station_addr);

(Vos_String_Equal ("low_pkt_priority® , var_name)) *var_p_ptr =
(char*) (&prs_ptr->sv_low_pkt_priority):

(Vos_String_Equal ("high_pkt_priority" , var_name)) *var_p_ptr

= (char*) (&prs_ptr->sv_high_pkt_priority):

(Vos_String_Equal ("arrival_rate® , var_name)) *var_p_ptr =
(char*) (&prs_ptr->sv_arrival_rate);

(Vos_String_Equal ("mean_pk_len" , var_name)) *var_p_ptr = (char*)
(&prs_ptr->sv_mean_pk_len):

(Vos_String_Equal ("async_mix® , var_name)) *var_p_ptr = (char*)
(&prs_ptr->sv_async_mix);

(Vos_String_Equal ("mac_iciptr® , var_name)) *var_p_ptr = (char¥*)
(&prs_ptr->sv_mac_iciptr);

(Vos_String_Equal ("num_addees_dist_ptr" , var_name)) *var_p_ptr =
(char*) (&prs_ptr->sv_num_addees_dist_ptr);

(Vos_String_Equal ("num_addees®” , var_name)) *var_p_ptr = (char*)
(&prs_ptr->sv_num_addees);

(Vos_String_Equal ("min_num_addees” , var_name)) *var_p_ptr =
(char*) (&prs_ptr->sv_min_num_addees);

(Vos_String_Equal ("max_num_addees® , var_name)) *var_p_ptr =
(char*) (&prs_ptr->sv_max_num_addees):

(Vos_String_Equal ("dest_addr® , var_name)) *var_p_ptr = (char*)
(prs_ptr->sv_dest_addr);
T;
en_mult_diag ()
ket *pkptr;
pklen;
*da_ptr;
i, restricted;
pkt_prio:
nix;
(fddi_gen_mult_diag ())
T:
en_mult_terminate ()
ket *pkptr;
pklen;

182

324
325
326
327
328
329

Kk)
332

336
Q7
339
K2)

358
360
361

362
363

Compcode
fddi_gen_mult_init (pr_state_pptr)

VOSC_FAILURE)

/*

/*
/*

/*

int *da_ptr:

int i, restricted:
int pkt_prio;

int nix;

FIN (fddi_gen_mult_terminate ())

FOUT;
}

fddi_gen_mult_state **pr_state_pptr;

{
static VosT_Cm_Obtype obtype = OPC_NIL;

FIN (fddi_gen_mult_init (pr_state_pptr))

if (obtype == QPC_NIL)

{
if (Vos_Catmem_Register ("proc state vars (fddi_gen_mult)",

sizeof (fddi_gen_mult_state), Vos_Nop., &obtype) ==

FRET (OPC_COMPCODE_FAILURE)

1
)

if ((*pr_state_pptr = (fddi_gen_mult_state*) Vos_Catmem_Alloc
{(obtype. 1)) == OPC_NIL)
FRET (OPC_COMPCODE_FAILURE)
else
{
(*pr_state_pptr)->current_block = 0:
FRET (OPC_COMPCODE_SUCCESS)
)
}

static added 2DEC93, on advice from MIL 3, Inc. */
static
fddi_gen_schedule ()

{
double inter_time;

obtain an interarrival period according to the */
prescribed distribution */
inter_time = op_dist_outcome (inter_dist_ptr);

schedule the arrival of next generated packet */

op_intrpt_schedule_self (op_sim_time () + inter_time, 0);
}

183

N —

[« T3 I N 7L

10
1
12
13

14
15
16
17
18
19
20
2

24
25
26
27
28

30

APPENDIX G. SINK "C'" CODE:

"fddi_sink_mult.pr.c"

The line numbering in this appendix is used for reference within this thesis only, and

does not correspond with that seen in OPNET®'s text editors.

/* Process model C form file: fddi_sink_mult.pr.c */
/* Portions of this file Copyright (C) MIL 3, Inc. 1992 */

/* OPNET system definitions */
##include <opnet.h>

f#finciude "fddi_sink_mult.pr.h"
FSM_EXT_DECS

/* Header block */

/* Globals */

/* array format installed 20JAN94; positions 0-7 represent the asynch
priority levels, PRIORITIES + 1 */

/* represents synch traffic, and grand totals are as given in the
original. */

fidefine PRIORITIES 8 /* 20JAN94 */

double fddi_sink_accum_delay = 0.0;

double fddi_sink_accum_delay_a[PRIORITIES + 1] = (0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0}:

int fddi_sink_total_pkts = O;

int fddi_sink_total_pkts_a[PRIORITIES + 1] = {0, 0, O, O, 0, O, O,
0. 0};

double fddi_sink_total_bits = 0.0;

double fddi_sink_total_bits_a[PRIORITIES + 1] = {0.0, 0.0. 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

double fddi_sink_peak_delay = 0.0;

double fddi_sink_peak_delay_a[PRIORITIES + 2] = (0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

int fddi_sink_scalar_write = 0;

int pri_set = 20;/* 20JAN94 */

/* Externally defined globals. */
extern double fddi_t_opr []:

184

55253288898 K 8w

BEIFZR R BRI2JTELE & BK828s8&EN

/* Attributes fromEnvironment file. */
double Offered_Load;/* 12JAN94 */
double Asynch_Offered_Load; /* 12JAN94 */

/* transition expressions */
fldefine END_OF_SIM op_intrpt_type() == OPC_INTRPT_ENDSIM

/* State variable definitions */
typedef struct

{
FSM_SYS_STATE

Gshandle sv_thru_gshandle;

Gshandle sv_m_delay_gshandle;

Gshandle sv_ete_delay_gshandle;

Gshandle sv_thru_gshandle_a[l10];

Gshandle sv_m_delay_gshandle_a[10];

Gshandle sv_ete_delay_gshandle_a[9];

} fddi_sink_mult_state:
fidefine pr_state_ptr ((fddi_sink_mult_state*)

SimI_Mod_State_Ptr)
jidefine thru_gshandie pr_state_ptr->sv_thru_gshandle
fidefine m_delay_gshandle pr_state_ptr->sv_m_delay_gshandle
fidefine ete_delay_gshandle pr_state_ptr->sv_ete_delay_gshandle
ftidefine thru_gshandlie_a pr_state_ptr->sv_thru_gshandle_a

fidefine m_delay_gshandle_a pr_state_ptr->sv_m_delay_gshandle_a
{#idefine ete_delay_gshandle_a pr_state_ptr->sv_ete_delay_gshandle_a

/* Process model interrupt handling procedure */
void

fddi_sink_mult ()
{

double delay, creat_time;
Packet* pkptr;

int src_addr, my_addr;
Ici* from_mac_ici_ptr;
double fddi_sink_ttrt;

FSM_ENTER (fddi_sink_mult)

FSM_BLOCK_SWITCH

/** state (DISCARD) enter executives **/
FSM_STATE_ENTER_UNFORCED (0, state0O_enter_exec, "DISCARD")
{
/* get the packet and the interface control info */
pkptr = op_pk_get (op_intrpt_strm ());
from_mac_ici_ptr = op_intrpt_ici ();

185

/* 20JAN94: get the packet's priority level, which */

/* will be used to index arrays of thruput and delay */

/* computations. */

/* pri_set = op_pk_priority_get (pkptr); doesn’t work here */
op_pk_nfd_get (pkptr, °pri®, &pri_set);/* 29JAN94 */

/* add in its size */
fddi_sink_total_bits += op_pk_total_size_get (pkptr);
fddi_sink_total_bits_alpri_set] += op_pk_total_size_get
(pkptr); /* 20JAN94 */

/* determine the time of creation of the packet */
op_pk_nfd_get (pkptr, "cr_time®, &creat_time);

/* accumulate delays */
delay = op_sim_time () - creat_time;
fddi_sink_accum_delay += delay:
fddi_sink_accum_delay_alpri_set] += delay; /* 20JAN94 */

/* keep track of peak delay value */
if (delay > fddi_sink_peak_delay)
fddi_sink_peak_delay = delay:

/* 20JAN94: keep track by priority levels as well 23JAN94 */
if (delay > fddi_sink_peak_delay_a[pri_set])
fddi_sink_peak_delay_aflpri_set] = delay:

/% (IR ILLLLLIL I LI S 22 222 2222 2 2R gt s il sls s */

/* printf("DISCARD: pri_set is %d\n", pri_set): */

/* PRI PRI F eI e s i e el sas ot Ra sl eyt)yd */

CLRE KB8BG8 28 TIRR 8 BLF IJds

/* destroy the packet */
op_pk_destroy (pkptr):

88

100 /* O3FEB94: To convert this to the "fddi_sink_link" */
10 /* model, deactivate the 'destroy’ code, and activate */
102 /* the following 'enqueue’ code. This is a first */

103 /* step toward developing a LAN bridging structure. */
104 /* -Nix */

105 /* op_subgq_pk_insert (pri_set, pkptr., OPC_QPOS_TAIL); */

106 /* increment packet counter; 20JAN94 */
107 fddi_sink_total_pkts++;
108 fddi_sink_total_pkts_alpri_set]++;

109 /* if a muitiple of 25 packets is reached, update stats */
110 /* O3FEB94: [0]->[7] represent asynch priorities 1->8, */

i /* respectively; [8] represents synchronous traffic, */
112 /* and [9] represents overall asynchronous traffic.-Nix */
13 if (fddi_sink_total_pkts ¥ 1 == 0)

186

114
15
16
17
18
19
120
121
122
123
12«
125
126
127
128
129
130
131
132
133
134
135

136
137
138
139
140
141
142
143
144
145

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

{
op_stat_global_write (thru_gshandle, fddi_sink_total_bits /

op_sim_time ()):
op_stat_global_write (thru_gshandle_a(0],
fddi_sink_total_bits_a{0] / op_sim_time()):
op_stat_global_write (thru_gshandle_a[l],
fddi_sink_total_bits_all] / op_sim_time());
op_stat_global_write (thru_gshandle_a[2],
fddi_sink_total_bits_al2] / op_sim_time()):
op_stat_global_write
(thru_gshandle_a(3].fddi_sink_total_bits_al3] /
op_sim_time()):
op_stat_global_write (thru_gshandle_a(4],
fddi_sink_total_bits_al4]) / op_sim_t me()):
op_stat_global_write (thru_gshandle_a[5.,
fddi_sink_total_bits_al(5] / op_sim_time());
op_stat_global_write (thru_gshandle_a[6].
fddi_sink_total_bits_al6] / op_sim_time());
op_stat_global_write (thru_gshandle_a(7],
fddi_sink_total_bits_a[7] / op_sim_time());
op_stat_global_write (thru_gshandle_a[8],
fddi_sink_total_bits_al8] / op_sim_time());

/* 30JAN94: gather all asynch stats into one overall figure */
op_stat_global_write (thru_gshandle_a(9],
(fddi_sink_total_bits_a[0] + fddi_sink_total_bits_a[l] +
fddi_sink_total_bits_al[2]) + fddi_sink_total_bits_a[3] +
fddi_sink_total_bits_a[4] + fddi_sink_total_bits_a[5] +
fddi_sink_total_bits_a[6] + fddi_sink_total_bits_al[7]) /
op_sim_time());

/* (fddi_sink_total_bits - fddi_sink_total_bits_a[8]) / */
/* op_sim_time()); */

op_stat_global_write (m_delay_gshandle, fddi_sink_accum_delay
/ fddi_sink_total_pkts);
op_stat_global_write (m_delay_gsha~dle_a[0],
fddi_sink_accum_delay_a[0] / fc _sink_total_pkts_a[0]);
op_stat_global_write (m_delay_gshe :le_a[l],
fddi_sink_accum_delay_al[ll / faci_sink_total_pkts_alll]):
op_stat_global_write (m_delay_gshandle_a[2],
fddi_sink_accum_delay_a[2] / fddi_sink_total_pkts_a[2]);
op_stat_global_write (m_delay_gshandle_a[3],
fddi_sink_accum_delay_a[3] / fddi_sink_total_pkts_a[3]):
op_stat_global_write (m_delay_gshandlie_a[4],
fddi_sink_accum_delay_a[4] / fddi_sink_total_pkts_a([4]);
op_stat_global_write (m_delay_gshandle_a{5],
fddi_sink_accum_delay_a[5] / fddi_sink_total_pkts_a[5]);
op_stat_global_write (m_delay_gshandle_a[6],
fddi_sink_accum_delay_a[6] / fddi_sink_total_pkts_al6]);

187

162 op_stat_global_write (m_delay_gshandle_a[7],

163 fddi_sink_accum_delay_a(7] / fddi_sink_total_pkts_a(7]1);
164 op_stat_global_write (m_delay_gshandle_a[8],

165 fddi_sink_accum_delay_a[8] / fddi_sink_total_pkts_a[8]):
166 /* 30JAN94: gather all asynch stats into one figure */

167 op_stat_global_write (m_delay_gshandle_a[9],

168 (fddi_sink_accum_delay_a[0] + fddi_sink_accum_delay_afl] +
169 fddi_sink_accum_delay_a[2] + fddi_sink_accum_delay_a[3] +
170 fddi_sink_accum_delay_a[4] + fddi_sink_accum_delay_a(5] +
1N fddi_sink_accum_delay_a[6) + fddi_sink_accum_delay_al7]) /
172 (fddi_sink_total_pkts_a[0] + fddi_sink_total_pkts_a[l]) +
17 fddi_sink_total_pkts_af[2] + fddi_sink_total_pkts_a[3] +
174 fddi_sink_total_pkts_a[4] + fddi_sink_total_pkts_a[5] +
175 fddi_sink_total_pkts_a[6) + fddi_sink_total_pkts_a[7])):
176

177 /* (fddi_sink_accum_delay - fddi_sink_accum_delay_a[8]) / */

178 /* (fddi_sink_total_pkts - fddi_sink_total_pkts_a[8])): */

179)

180 /* also record actual delay values */

181 op_stat_global_write (ete_delay_gshandle, delay);

182 op_stat_global_write (ete_delay_gshandle_alpri_set], delay):
183)

184 /** blocking after enter executives of unforced state. **/

185 FSM_EXIT (1,fddi_sink_mult)

186 /** state (DISCARD) exit executives **/

187 FSM_STATZ_EXIT_UNFORCED (0, state0_exit_exec, "DISCARD")

188 {

189 }

190 /** state (DISCARD) transition processing **/

191 FSM_INIT_COND (END_OF_SIM)

192 FSM_DFLT_COND

193 FSM_TEST_LOGIC ("DISCARD")

194 FSM_TRANSIT_SWITCH

195 {

196 FSM_CASE_TRANSIT (0, 1, statel_enter_exec, ;)

197 FSM_CASE_TRANSIT (1, 0, state0O_enter_exec, :)

198)

L I A R L R AR EEEEEERE R EE RS */

200 /** state (STATS) enter executives **/

20 FSM_STATE_ENTER_UNFORCED (1, statel_enter_exec, "STATS")

202 {

188

FEESUBEENEEENNNEZIIZZITIIZZIZREES BB

/* At end of simulation, scalar performance statistics */
/* and input parameters are written out. */

/* Only one station needs to do this */
if (!fddi_sink_scalar_write)
{
/* set the scalar write flag */

fddi_sink_scalar_write = 1;

op_stat_scalar_write ("Mean End-to-End Delay
Priority 1, fddi_sink_accum_delay_a[0] /
fddi_sink_total_pkts_a(0]);

op_stat_scalar_write ("Mean End-to-End Delay
Priority 2", fddi_sink_accum_delay_a[l] /
fddi_sink_total_pkts_a(l]):

op_stat_scalar_write ("Mean End-to-End Delay
Priority 3", fddi_sink_accum_delay_a(2] /
fddi_sink_total_pkts_al2]);

op_stat_scalar_write (°"Mean End-to-End Delay
Priority 4", fddi_sink_accum_delay_a[3] /
fddi_sink_total_pkts_a[3]);

op_stat_scalar_write (°"Mean End-to-End Delay
Priority 5", fddi_sink_accum_delay_a[4] /
fddi_sink_total_pkts_al4]):

op_stat_scalar_write ("Mean End-to-End Delay
Priority 6", fddi_sink_accum_delay_a[5] /
fddi_sink_total_pkts_a[5]):

op_stat_scalar_write (°*Mean End-to-End Delay
Priority 7°, fddi_sink_accum_delay_a[6] /
fddi_sink_total_pkts_a[6]):

op_stat_scalar_write (°Mean End-to-End Delay
Priority 8", fddi_stnk_accum_delay_a(7] /
fddi_sink_total_pkts_a[7]):

(sec.

(sec.

(sec.

(sec.

(sec.

(sec.

(sec.

(sec.

),

),

).

).

op_stat_scalar_write (°Mean End-to-End Delay (sec.),

Asynchronous", (fddi_sink_accum_delay -

fddi_sink_accum_delay_a[8]) / (fddi_sink_total_pkts -

fddi_sink_total_pkts_a{81)):

/* (fddi_sink_accum_delay_a[0] + fadi_sink_accum_delay_a[l] +

/* fddi_sink_accum_delay_a{2] + fadi_sink_accum_delay_a[3] +

/* fddi_sink_accum_delay_a[4] + fdai_sink_accum_delay_a[5

] +

*/
*/
*/

/* fddi_sink_accum_delay_a[6] + fddi_sink_accum_delay_a[7]) / */

/* (fddi_sink_total_pkts_a[0] + fddi_sink_total_pkts_a[l]

+

/* fddi_sink_total_pkts_a[2] + fddi_sink_total_pkts_a[3] +
/* fddi_sink_total_pkts_a[4] + fddi_sink_total_pkts_a[5] +

/* fddi_sink_total_pkts_a[6] + fddi_sink_total_pkts_a(7])

)i

*/
*/
*/
*/

op_stat_scalar_write ("Mean End-to-End Delay (sec.),

Synchronous”, fddi_sink_accum_delay_a[8] /
fddi_sink_total_pkts_a[8]);

189

P X r:'va

ERFHIARE BEPARRTHBARE

/*
/*
/*
[*
/*

op_stat_scalar_write (°Mean End-to-End Delay (sec
fddi_sink_accum_delay / fddi_sink_total_pkts);
op_stat_scalar_write ("Throughput (bps), Priority
fddi_sink_total_bits_a[0] / op_sim_time ());
op_stat_scalar_write ("Throughput (bps), Priority
fddi_sink_total_bits_all] / op_sim_time ());
op_stat_scalar_write ("Throughput (bps), Priority
fddi_sink_total_bits_al[2] / op_sim_time ());
op_stat_scalar_write ("Throughput (bps), Priority
fddi_sink_total_bits_a[3] / op_sim_time ());
op_stat_scalar_write ("Throughput (bps), Priority
fddi_sink_total_bits_al4] / op_sim_time ());

op_stat_scalar_write (°Throughput (bps), Priority
fddi_sink_total_bits_a[5] / op_sim_time ());

op_stat_scalar_write (°"Throughput (bps), Priority
fddi_sink_total_bits_al(6) / op_sim_time ());

op_stat_scalar_write ("Throughput (bps), Priority
fddi_sink_total_bits_al7] / op_sim_time ());

op_stat_scalar_write ("Throughput (bps), Asynchro
(fddi_sink_total_bits - fddi_sink_total_bits_a
op_sim_time ()):

(fddi_sink_total_bits_a[0) + fddi_sink_total_bits_a[l] +
fddi_sink_total_bits_a[2] + fddi_sink_total_bits_a[3] +

fddi_sink_total_bits_a[4] + fddi_sink_total_bits_a[5] +

fddi_sink_total_bits_a[6] + fddi_sink_total_bits_a[7]) /
op_sim_time ()); */

op_stat_scalar_write ("Throughput (bps), Synchronous
fddi_sink_total_bits_a[(8] / op_sim_time ());
op_stat_scalar_write ("Throughput (bps), Total®,
fddi_sink_total_bits / op_sim_time ());
op_stat_scalar_write ("Peak End-to-End Delay (sec.),
1°, fddi_sink_peak_delay_a[0]);
op_stat_scalar_write ("Peak End-to-End Delay (sec.),
2", fddi_sink_peak_delay_a(l]):;
op_stat_scalar_write ("Peak End-to-End Delay (sec.),
3, fddi_sink_peak_delay_al2]):
op_stat_scalar_write ("Peak End-to-End Delay (sec.),
4", fddi_sink_peak_delay_a[3]):
op_stat_scalar_write ("Peak End-to-End Delay (sec.),
5", fddi_sink_peak_delay_a[4]);
op_stat_scalar_write ("Peak End-to-End Delay (sec.),
6", fddi_sink_peak_delay_a[5]));
op_stat_scalar_write ("Peak End-to-End Delay (sec.),
7", fddi_sink_peak_delay_a(6]);

op_stat_scalar_write ("Peak End-to-End Delay (sec.),
8", fddi_sink_peak_delay_a(71]);
190

.), Total",

nous”,
[(8]) /

*/
*/
*/
*/

Priority
Priority
Priority
Priority
Priority
Priority
Priority

Priority

ZEEE588 BE88 BB

R

B8 BERR

EGREBREER

ap_stat_scalar_write ("Peak End-to-End Delay (sec.),
Synchronous®, fddi_sink_peak_delay_a[81]);

op_stat_scalar_write ("Peak End-to-End Delay (sec.), Overall",
fddi_sink_peak_delay);

/* Write the TTRT value for ring 0. This preserves */
/* the old behavior for single-ring simulations. */
op_stat_scalar_write (“TTRT (sec.) - Ring 0",fddi_t_opr

(01

/* 12JAN94: obtain offered l1oad information from the Environment */
/* file; this will be used to provide abscissa information that */
/* can be plotted in the Analysis Editor (see “fddi_sink® STATS =/
/* state. To the user: it's your job to keep these current in */
/* the Environment File. -Nix */
op_ima_sim_attr_get (OPC_IMA_DOUBLE, "total_offered_load",
&0ffered_Load);
op_ima_sim_attr_get (OPC_IMA_DOUBLE, "asynch_offered_load",
&Asynch_Offered_Load):

/* 12JAN94: write the total offered load for this run */
op_stat_scalar_write ("Total Offered Load
(Mbps)“,0ffered_Load);
op_stat_scalar_write ("Asynchronous Offered Load (Mbps)”,
Asynch_Offered_Load);
}
}

/** blocking after enter executives of unforced state. **/
FSM_EXIT (3,fddi_sink_mult)

/** state (STATS) exit executives **/
FSM_STATE_EXIT_UNFORCED (1, statel_exit_exec, "STATS")
{
}

/** state (STATS) transition processing **/
FSM_TRANSIT_MISSING ("STATS")

/** state (INIT) enter executives **/
FSM_STATE_ENTER_FORCED (2, state2_enter_exec, "INIT")
{
/* get the gshandles of the global statistic to be obtained */
/* 20JAN94: set array format */

thru_gshandle_a[0] = op_stat_global_reg ("pri 1 throughput
(bps)®);

191

AR EREL- 34 33 30k 3 R E 23 232 $ 3 R R 440

376
n
378

380
381
382

384

thru_gshandle_a[l) = op_stat_global_reg ("pri 2 throughput
(bps)");

thru_gshandle_a(2] = op_stat_global_reg ("pri 3 throughput
(bps)");

thru_gshandle_a[3] = op_stat_global_reg ("pri 4 throughput
(bps)*®):

thru_gshandle_af4] = op_stat_global_reg ("pri 5 throughput
(bps)™);

thru_gshandle_a[5] = op_stat_gliobal_reg ("pri 6 throughput
{(bps)*);

thru_gshandle_a[6] = op_stat_global_reg ("pri 7 throughput
(bps)"):

thru_gshandle_a[7] = op_stat_global_reg ("pri 8 throughput
(bps)*);

thru_gshandle_a[8] = op_stat_global_reg ("synch throughput
(bps)*®);

thru_gshandle_a[9] = op_stat_global_reg ("async throughput
(bps)");

thru_gshandle = op_stat_global_reg ("total throughput (bps)");

m_delay_gshandie_a[0] = op_stat_global_reg ("pri 1 mean delay
(sec.)");

m_delay_gshandle_a(l] =~ op_stat_gliobal_reg ("pri 2 mean delay
(sec.)*):

m_delay_gshandle_a[2] = op_stat_global_reg ("pri 3 mean delay
(sec.)"):

m_delay_gshandle_a[3] = op_stat_global_reg ("pri 4 mean delay
(sec.)"):

m_delay_gshandle_a[4] = op_stat_global_reg ("pri 5 mean delay
(sec.)"):

m_delay_gshandle_a[5] = op_stat_global_reg ("pri 6 mean delay
(sec.)");

m_delay_gshandle_a[6] = op_stat_global_reg ("pri 7 mean delay
(sec.)");

m_delay_gshandle_a(7] = op_stat_global_reg ("pri 8 mean delay
(sec.)"):

m_delay_gshandle_a[8] = op_stat_global_reg ("synch mean delay
(sec.)"):

m_delay_gshandle_a[9]
(sec.)"):;

m_delay_gshandle = op_stat_giobal_reg ("total mean delay
(sec.)"):

ete_delay_gshandle_a[0] = op_stat_global_reg ("pri 1 end-to-end
delay (sec.)"):

ete_delay_gshandle_a[l] = op_stat_global_reg ("pri 2 end-to-end
delay (sec.)"):

ete_delay_gshandle_a[2] = op_stat_global_reg ("pri 3 end-to-end
delay (sec.)"):

ete_delay_gshandle_a[3] = op_stat_global_reg ("pri 4 end-to-end
delay (sec.)"):

op_stat_global_reg ("async mean delay

192

EEEREREELERES

R&E88

2333288 &&28

parfioo
on

416
417
418
419
420

42

422
423
424
425
426
4271
428

ete_delay_gshandle_a[4] op_stat_global_reg ("pri 5§
delay (sec.)"):
ete_delay_gshandle_a[5]
delay (sec.)*®);
ete_delay_gshandle_a[6]
delay (sec.)"):
ete_delay_gshandle_a[7] = op_stat_global_reg ("pri 8
delay (sec.)"):
ete_delay_gshandle_a[8]
delay (sec.)"):

op_stat_global_reg ("pri 6

op_stat_global_reg ("pri 7

op_stat_global_reg ("synch

end-to-end
end-to-end
end-to-end
end-to-end

end-to-end

ete_delay_gshandle = op_stat_global_reg ("total end-to-end

delay (sec.)"):
)

/** state (INIT) exit executives **/

FSM_STATE_EXIT_FORCED (2, state2_exit_exec, "INIT")
{
}

/** state (INIT) transition processing **/

FSM_INIT_COND (END_OF_SIM)
FSM_DFLT_COND
FSM_TEST_LOGIC ("INIT*)

FSM_TRANSIT_SWITCH

{
FSM_CASE_TRANSIT (0, 1, statel_enter_exec, ;)

FSM_CASE_TRANSIT (1, 0, stateO_enter_exec, ;)

FSM_EXIT (2.fddi_sink_mult)
}

void
fddi_sink_mult_svar (prs_ptr.,var_name,var_p_ptr)

fddi_sink_mult_state *prs_ptr;
char *var_name, **var_p_ptr:
{

FIN (fddi_sink_mult_svar (prs_ptr))

*var_p_ptr = VOS_NIL;

if (Vos_String_Equal ("thru_gshandle® , var_name))
*var_p_ptr = (char *) (&prs_ptr->sv_thru_gshandle);

if (Vos_String_Equal ("m_delay_gshandle™ , var_name))
*var_p_ptr = (char *) (&prs_ptr->sv_m_delay_gshandle);

if (Vos_String_Equal ("ete_delay_gshandle” , var_name))
*var_p_ptr = (char *) (&prs_ptr->sv_ete_delay_gshandle);

193

437

449

if (Vos_String_Equal ("thru_gshandle_a" , var_name))
*var_p_ptr = (char *) (prs_ptr->sv_thru_gshandle_a):

if (Vos_String_Equal ("m_delay_gshandle_a" , var_name))
*var_p_ptr = (char *) (prs_ptr->sv_m_delay_gshandle_a):

if (Vos_String_Equal ("ete_delay_gshandle_a® , var_name))
*var_p_ptr = (char *) (prs_ptr->sv_ete_delay_gshandle_a);

FouT:

)

void

fddi_sink_mult_diag ()
{
double detlay, creat_time:;
Packet* pkptr;
int src_addr, my_addr:
Ici* from_mac_ici_ptr:
double fddi_sink_ttrt;
FIN (fddi_sink_mult_diag ())
FOUT;
}

void

fddi_sink_mult_terminate ()
{

double delay, creat_time;
Packet* pkptr;
int src_addr, my_addr:
Ici* from_mac_ici_ptr;
double fddi_sink_ttrt;
FIN (fddi_sink_mult_terminate ())
FOUT;
}

Compcode

fddi_sink_mult_init (pr_state_pptr)
fddi_sink_mult_state **pr_state_pptr;

{
static VosT_Cm_Obtype obtype = OPC_NIL;

FIN (fddi_sink_mult_init (pr_state_pptr))

if (obtype == OPC_NIL)
{
if (Vos_Catmem_Register ("proc state vars (fddi_sink_mulit)",
sizeof (fddi_sink_mult_state), Vos_Nop, &obtype) ==
VOSC_FAILURE)
FRET (OPC_COMPCODE_FAILURE)

194

472

474
475
476
47
478
479

if ((*pr_state_pptr = (fddi_sink_mult_state*) Vos_Catmem_Alloc

(obtype, 1)) == OPC_NIL)

FRET (OPC_COMPCODE_FAILURE)
else

{

(*pr_state_pptr)->current_block = 4;

FRET (OPC_COMPCODE_SUCCESS)
}

195

APPENDIX H. ENVIRONMENT FILE FOR

S0-STATION MULTICAST CAPABLE FDDI LAN

fddisOmuit.ef
{# sample simulation configuration file for fddi example model
50 station network with multiple addressing capability

fi*** Attributes related to loading used by "fddi_gen® *»»

station addresses

.f0.mac.station_address:
.fl.mac.station_address:
.fZ2.mac.station_address:
.f3.mac.station_address:
.f4.mac.station_address:
.f5.mac.station_address:
.f6.mac.station_address:
.f7.mac.station_address:
.fB.mac.station_address:
.f9.mac.station_address:
.fl0.mac.station_address: 10
.fll.mac.station_address: 11
.fl2.mac.station_address: 12
.fl3.mac.station_address: 13
.fl4 .mac.station_address: 14
.fl5.mac.station_address: 15
.flé.mac.station_address: 16
.fl7.mac.station_address: 17
.fl8.mac.station_address: 18
.fl9.mac.station_address: 19
.f20.mac.station_aadress: 20
.f21.mac.station_address: 21
.f22.mac.station_address: 22
.f23.mac.station_address: 23
.f24 .mac.station_address: 24
.f25.mac.station_address: 25
.f26.mac.station_address: 26
.f27 .mac.station_address: 27
.f28.mac.station_address: 28
.f29.mac.station_address: 29
.f30.mac.station_address: 30
.f3l.mac.station_address: 31
.f32.mac.station_address: 32
.f33.mac.station_address: 33

ODOONOAOHEWN O

* oA ok ok & o A A ok Ok o A b A A A A % * R A R A * R * A ¥ A * * # * ¥ X
#######*###**#*####*##*#*#'#.#.#'*.**

196

.f34 .mac.station_address: 34
.f35.mac.station_address: 35
.f36.mac.station_address: 36
.f37 .mac.station_address: 37
.f38.mac.station_address: 38
.f39.mac.station_address: 39
.f40.mac.station_address: 40
.f41 .mac.station_address: 4l
.f42.mac.station_address: 42
.f43.mac.station_address: 43
.f44 .mac.station_address: 44
.f45.mac.station_address: 45
.f46.mac.station_address: 46
.f47 .mac.station_address: 47
.f48.mac.station_address: 48
.f49 .mac.station_address: 49

* o # % * A * % * % % X % * * #*
* % o % A % % X X * * * % * % ¥

*

.*.* mac.ring_id :0

{# Range number of stations that may recieve this packet if more
than one is designated (model defaults are both 1)

Note that the code does not allow the originating station to
f# address a packet to itself, so max_num_addees is less than

the number of stations.

** *]lc_src.min num addees" : 1

*x * 1lc_src.max num addees® : 1

destination addresses for random message generation
** * 11c_src.low dest address” : 0
"« * 1lc_src.high dest address" : 49

"* f0.11c_src.low dest address”™ : 0
**.f0.11c_src.high dest address" : 49

range of priority values that can be assigned to packets; FDDI

standards allow for 8 priorities of asynchronous traffic. MIL3's
original model is modified to allow each station to generate

multiple priorities, within a specified range. (Note that while

{# research literature refers to asynchronous priorities ranging

from 1 to 8, the corresponding numbering here is 0 to 7, in

keeping with the C language array element numbering convention.)

"* * 1lc_src.high pkt priority"” : 7

** * Jc_src.low pkt priority" : 0

ff arrival rate(frames/sec), and message size (bits) for random
{# message generation at each station on the ring.

"% % * arrival rate” : 750

"* % * mean pk length" : 1000

{f These are the synchronus transmitters

197

** f0.*.arrival rate" : 6000
"*_f0.*.mean pk length* : 512
** f§5.* arrival rate* : 6000
“* f5.%* mean pk length® : 512

** _f10.*.arrival rate” : 6000
** f10.*.mean pk length® : 512
“* fl15.% arrival rate" : 6000
** f15.* mean pk length® : 512
** f20.*.arrival rate" : 60000
** _£20.*.mean pk length" : 512
** f25.* arrival rate" + 6000
"% _£25.* mean pk length" : 512
** £30.*.arrival rate" : 6000
** f£30.*.mean pk length" : 512
** f35.* arrival rate" : 6000
** f£35.* mean pk length®" : 512
** f40.* arrival rate" : 6000
"*_ f40.* mean pk length® : 512
** _f45.* arrival rate® : 60000
**_f45.* mean pk length® : 512

12DEC93: total offered load is the sum of all stations’

1oads (Mbps). Compute this by hand; this value 1s used in
f# the sink process model for generating scalar plots where
f# offered load is the abscissa.

total_offered_load : 60.72
asynch_offered_load : 30.00

set the proportion of asynchronous traffic
a value of 1.0 indicates all asynchronous traffic

*x % * async_mix" : 1.0
** f0.*.async_mix" : 0.0
"+ f5.* async_mix" : 0.0
** f10.*.async_mix" : 0.0
** f15.* async_mix" : 0.0
** f20.*.async_mix" : 0.0
"% £25.* async_mix" : 0.0
** £30.*.async_mix" : 0.0
"* £35.*% async_mix" : 0.0
"* f40.* . async_mix" : 0.0
"% _£45.* async_mix" : 0.0

fi*** Ring configuration attributes used by "fddi_mac"® ***

allocate percentage of synchronous bandwidth to each station

this value should not exceed 1 for all stations combined: OPNET

does not

{f enforce this; O1FEB94: this must be less than 1; see equation below
"% * mac.sync bandwidth® : 0.0

198

**_f0.mac.sync bandwidth® : .09358
**_f5.mac.sync bandwidth® : .09358
** fl10.mac.sync bandwidth® : .09358
** fl15.mac.sync bandwidth® : .09358
** f20.mac.sync bandwidth® : .09358
** f25.mac.sync bandwidth® : .09358
** f30.mac.sync bandwidth® : .09358
**_f35.mac.sync bandwidth" : .09358
** f40.mac.sync bandwidth® : .09358
**_f45.mac.sync bandwidth®" : .09358

Target Token Rotation Time (one half of maximum
synchronous response time)
"* * mac.T_Req" : .0107

Index of the station which initially launches the token
“spawn station": 0

Delay incurred by packets as they traverse a station's
ring interface (see Powers, p. 351 for a discussion

f# of this (Powers gives lusec, but 60.0e-08 agrees with
Dykeman & Bux)

station_latency: 60.0e-08

Propagation Delay separating stations on the ring.
prop_delay: 5.085e-06

Simulation related attributes

Token Acceleration Mechanism enabling flag.

It is reccomended that this mechanism be enabled for most
{## situations

accelerate_token: 1

seed: 10

Run control attributes

duration: .5
verbose_sim: TRUE
upd_int: .1
os_file: fddi50mult
ov_file: fddiS0Omult

{f Opnet Debugger (odb) enabling attribute
debug: TRUE

199

APPENDIX 1. CONVENTIONS

One of the purposes of this report is that it will be used both as a teaching tool and
a springboard for future researchers and assessors of fiber optic network simulations
implementing OPNET®. Throughout the writing of this report, the author has kept these
goals in sight and the resulting narrative contains technical stylistic conventions in keeping
with the projected use of this material in a teaching, reference, and research environment
These conventions, implemented in the narrative portion of this report only, are briefly
described here.

All excerpted programming code fragments are isolated on their own lines within the
text and highlighted by a standard san-serif font. Variable names, function names,
and names of programming objects referred to wnthm the text of the report are also
highlighted in this manner, with a standard san-serif font. Messages from the
computer or responses to be made to computer queries are set off in double quotes and a
"bold standard san-serif font.” Single kéystrokes are highlighted in capitalized
italics, (e.g. <CTRL+S>), while parameters are also set off in the same manner (e.g.

<{number of nodes>).

200

APPENDIX J. GLOSSARY

BONesS*® Block Oriented Network Simulator

CDL Common Data Link

DSPO Defense Support Project Office

Environment file A command file containing descriptors and values

utilized by a system to define the operating

parameters. Sometimes this file is referred to as the

*configuration file."
FDDI LAN Fiber Distributed Data Interface Local Area Network
MAC Medium Access Control
OPNET® Optimized Network Engineering Tool
THT Token Holding Timer
TRT Token Rotation Timer

TTRT Target Token Rotation Time

201

LIST OF REFERENCES

Defense Support Project Office, CDL System Description Document for Common Data
link (CDL), 1993.

Dykeman, D., and Bux, W., "Analysis and Tuning of the FDDI Media Access Control
Protocol," IEEE Journal on Selected Areas in Communications, v. 6, no. 6, pp. 997-
1010, July 1988.

Jain, Raj, "Performance Analysis of FDDI Token Ring Networks: Effect of Parameters
and Guidelines for Setting TTRT," JEEE LTS, v. 2, no. 2, pp. 16-22, May 1991.

MIL 3, Inc., OPNET Modeler,(user's manual in 11 volumes), 3400 International Drive
NW, Washington D.C. 20008, 1993.

Powers, John P., An Introduction to Fiber Optic Systems, Richard D. Irwin, Inc., and
Aksen Associates, Inc., 1993.

Shukla, Shridhar B., "Interfacing Remote Platforms Using the Common Data Link -
Requirements and Structural Alternatives,” report submitted to CDL Project Manager,
Defense Support Project Office, December 1993.

Schenone, Aldo B., Modeling and Simulation of a Fiber Distributed Data Interface Local
Area Network, Master's Thesis, Naval Postgraduate School, Monterey, California,
September 1993.

Stallings, William, Data and Computer Communications, Third Edition, Macmillan
Publishing Company, 1991.

Stallings, William, Local and Metropolitan Area Networks, Fourth Edition, Macmillan
Publishing Company, 1993.

Tari, F., and others, "Analyzing FDDI-Based Networks Using BONeS," SPIE, v. 1577,
pp. 54-65, 1991.

202

R - T Sk oA it

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

Library, Code 52
Naval Postgraduate School
Monterey, CA 93943-5101

Chairman, Code EC
Department of Electrical and Computer Engineering

Naval Postgraduate School
Monterey, CA 93943-5121

Professor Shridhar Shukla, Code EC/Sh
Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5121

Professor Gilbert Lundy, Code CS/Ln
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5118

Professor Paul Moose, Code EC/Me

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5121

Mark Russon, UNISYS

Mail Station F2-G14

640 North 2200 West

Salt Lake City, UT 84116-2988

203

9

CDL Program Manager
Defense Support Project Office
Washington D.C. 20330-1000

LT Ermest E. Nix, Jr., USN
502 Paris View Dr.
Travelers Rest, SC 29690

204

